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Abstract

Abstract

Political marginal conditions for PV systems, such as feed-in limitations have resulted
in the need for intelligent operation strategies. Proprietary solutions available on the

market today are costly and intelligent controllers for building energy systems can thus
be classified as luxury products. There is a need for generic software based on

standards for the control of multi-generator systems. This thesis aims to provide an
open source solution that can be used on a variety of inexpensive hardware.

Communication libraries that enable co-simulations between IEC 61499 control
systems and simulation software (Matlab® and Polysun®) are developed. Using the
libraries and simulation tools, models and algorithms are transferred to IEC 61499

control applications with the industry compatible, open source environment 4diac. The
applications are then deployed and prepared for use in the field.

Acknowledgements

In the process of researching and writing this thesis, I have encountered many
challenges that could not have been overcome alone.

I would first like to thank my thesis advisors, Prof. Dr.-Ing Volker Quaschning and M.Sc.
Tjarko Tjaden at HTW Berlin for the continuous support of my study and related

research. They consistently allowed this paper to be my own work, but steered me in
the right direction whenever they deemed it necessary.

Besides my advisors, I would like to thank the other current and former members of the
research group “Solar Storage Systems” at HTW Berlin - David Beier, Joseph Bergner,

Faido Ewald, Johannes Kretzer, Nico Orth, Felix Schnorr, Ronny Schulz, Bernhard
Siegel, and Johannes Weniger. Our work together in the last three and a half years has

provided me with expertise, experience and confidence I would never have gained
elsewhere.

My profound gratitude also goes to the team at Vela Solaris AG, for aiding me in the
use of Polysun® and the development of the Polysun4diac plugin controller library -
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Preface

Typing conventions of this document

Since this thesis in part provides a detailed description of source code, the following
special text formatting is used extensively:

• Source code, variables, objects and properties are formatted in fixed-width font
and colour coded according to the respective programming language. The same
applies to IEC 61499 function block names, inputs, outputs algorithms and states.

• Functions (methods) are formatted in fixed-width font with brackets added at
the end, e.g., helloWorld().

• Formulas, mathematical symbols, physical units and constants are formatted
according to the standards DIN 1338, DIN 1304, DIN 1301 and DIN 1313.

• If a formula, symbol, unit or constant is used as a variable within source code, the
fixed-width font is used instead of the above.

Source code and terminology

Object oriented programming (OOP) and design pattern terminology is used frequently
for the source code documentation. It is assumed that the reader has an understanding
of OOP and the basic design patterns. Less commonly used design patterns are
described briefly. For a deeper understanding of the code documentation, it is recom-
mended that the reader learn how to interpret design pattern catalogues.

The source code of the libraries developed within the scope of this thesis can be
downloaded from the following URLs:

• tcpip4diac: Matlab - IEC 61499 communication library
github.com/MrcJkb/tcpip4diac/

• Polysun4diac: Polysun - IEC 61499 communication plugin
github.com/MrcJkb/Polysun-4diac-ControllerPlugin/

• IEC 61499 function block library and a selection of control applications
github.com/MrcJkb/PVTControllerLib/

• HTTP communication layer for 4diac-RTE
github.com/MrcJkb/forte_http_comm/

• EEBus “SPINE” and “SHIP” communication layers for 4diac-RTE
github.com/MrcJkb/forte_spine_comm/

github.com/MrcJkb/tcpip4diac/
github.com/MrcJkb/Polysun-4diac-ControllerPlugin/
github.com/MrcJkb/PVTControllerLib/
github.com/MrcJkb/forte_http_comm/
github.com/MrcJkb/forte_spine_comm/
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Introduction

1. Introduction

1.1. Motivation

Decreasing feed-in tariffs and the combination of declining PV energy costs and increas-
ing grid electricity prices are driving the trend for PV systems further in the direction
of self-consumption. As a result, home-owners are incorporating batteries and heat
pumps into their systems in order to increase the use of excess energy, rather than sell
it to the grid. However, political marginal conditions such as feed-in limitations have
resulted in the need for more complex, intelligent operational strategies. Today, there is
a broad selection of smart energy managers and controllers available on the market.
Their main tasks are to shift the energy consumption to times of high PV production by
means of forecast based battery operation and/or demand side management (DSM).
The development of such control applications can be a long and tedious process. Of-
ten, the control algorithms are first developed and simulated in a prototyping phase,
using tools such as Matlab®. Then, the applications must be ported to a programming
language that can be understood by the controller hardware and validated again in field
tests. This can be a time consuming and challenging process.
The proprietary solutions available on the market today are expensive; thus intelligent
controllers for building energy systems can be classified as luxury products. An open
source solution, the “PVprog” algorithm developed at HTW Berlin [1], exists in the
form of Matlab® simulation source code. It needs to be ported to other programming
languages before being applied in the field. There is currently a lack of generic software
based on standards for the control of multi-generator systems.

1.2. Objectives

This thesis aims to facilitate the development of intelligent control systems by developing
open source libraries that allow the co-simulation of IEC 61499 control applications and
simulation tools. The intention is to reduce the prototyping phase to a bare minimum,
eliminating the need to port software from one language to another.
Using the co-simulation tools, a set of open source control applications that can readily
be run on a large variety of low cost PLC hardware are developed and validated.
The applications are focused on grid-connected PV energy system configurations as
illustrated in figure 1.1. Each system includes a PV generator, an electrical load, an
optional battery and an optional heat pump. The controllers act upon the PV inverter,
the battery and the heat pump. Additionally, they take measurements from each of
the components. Other household appliances that could potentially be used for DSM,
such as washing machines or dish washers, are not regarded within the scope of this
thesis. However, a modular design is intended for the control applications, so that new
components can be added at a later time.
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Battery

GridLoad
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Measurement
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Physical connection
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Figure 1.1: Overview of the system configurations and integration of the controller.

The objectives can be summarized as follows:

• Facilitation of the development process of control applications by reducing the
prototyping phase.

• Elimination of the need to deploy prototypes to different programming languages.

• Design and validation of generic intelligent control applications based on standards
for systems as depicted in figure 1.1.

• Establishment of an open source community in the field of energy management.

1.3. Approach

First, the criteria for the control applications are defined and accordingly, appropriate
technologies are selected. Benefits and disadvantages of the two PLC standards
IEC 61131-3 and IEC 61499 are weighted and according to the comparison, a choice in
software and hardware is made. The subsequent section briefly introduces the younger
IEC 61499 standard, which defines event-based PLC programming using so-called
function blocks (FBs). It aims to provide the reader with the necessary information to
understand the IEC 61499 function block library that was created for the development of
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intelligent PV system controllers. After providing a detailed description of the underlying
algorithms of the forecast based PVprog operation strategy for PV battery systems, the
PV system function block libraries are documented.
Prior to the development of the first PVprog and curtailment applications, an open source
Matlab® library that enables the co-simulation between Matlab® and IEC 61499
applications was devised. The library’s use and functionality are documented in detail
and it is used for the validation of the first set of control applications. For the creation
of more complex applications that also control SG Ready heat pumps, another open
source communication library is developed in JAVA™ and used within a plugin that
enables the co-simulation of IEC 61499 applications with Polysun®. Various control
applications are designed and validated based on Polysun® co-simulations. After
augmenting the PLC runtime environment (RTE) “4diac-RTE” (FORTE) with additional
communication abilities required for use in many building energy systems, one of the
applications is deployed to hardware and tested in the field. Finally, the results of this
thesis are summarized, discussed and concluded.
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2. Technology selection

The criteria for the control application are discussed in the following subsections.
Various technologies are compared and those that best fit the set criteria are selected
for use in this project.

2.1. Criteria

At the time of beginning this thesis, it was unclear whether deployment and field testing
of a control application would be possible within the time constraints or not. Therefore,
one of the main criteria is flexibility. The control applications need to be designed in
such a way that their functionality can be validated using the tools at hand. Even with
the possibility of field tests, one of the goals is to speed up the development process by
reducing the prototyping phase. The control applications designed with simulation tools
should be deployable to real systems with as few changes made to them as possible.
As mentioned in section 1.2, the software should be generic and based on standards.
This ensures a high portability and an easy understandability for potential users and
developers. Finally, the project is intended to be fully open source. As such, the
final products’ usability should not be bound to any proprietary software or hardware
limitations.

2.2. Model View Controller

An approach commonly used for high flexibility in object oriented programming (OOP)
is the MVC design pattern [2]. It was devised to decouple the model (i.e. the application
logic), the view (e.g., a graphical user interface (GUI)) and the controller (that performs
operations on the model). This results in a high code re-usability. A visualization
of the MVC design pattern is shown in figure 2.1. The user interacts with the view,
which in turn delegates the user’s requests to the controller’s interface. The controller
updates the view with the actions being performed and manipulates the model. When
the model’s state changes, the view is notified and requests the current state from
the model. Each element can be exchanged for other components with equivalent
interfaces. For example, a GUI can be replaced by a command-line user interface (CLI).
The MVC design pattern can be regarded as a good solution for the uncertainty
regarding the possibility of field tests, which would be necessary owing to the complexity
of some of the control algorithms. In this particular case, the model can either be a
simulated energy system (e.g., by Polysun®) or a real system. The view can be a
human machine interface (HMI), a GUI or a CLI. Finally, the controller is one of the
control applications developed within the scope of this thesis.
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MODEL

CONTROLLERVIEW

Delegates user 
requests

Updates

Simulation (Polysun)
Real system

HMI, GUI or CLI

Figure 2.1: Visualization of the MVC design pattern.

2.3. PLC standards

There currently exist two standards for PLCs: IEC IEC 61131-3 [3] (originally pub-
lished in 1993) and IEC 61499 [4] (published in 2005 and revised in 2012), whereby
IEC 61131-3 has been widely adopted in the automation industry [5]. IEC 61131-3
defines the following five procedural programming languages:

• Function block diagram (FBD)

• Instruction list (IL)

• Ladder diagram (LD)

• Sequential function chart (SFC)

• Structured text (ST)

FBD, LD and SFC are graphical, while ST and IL are textual programming languages.
PLCs can be programmed using combinations of these languages in software envir-
onments such as CODESYS. Due to the fact that the standard has been established
in the industry, it brings with it the advantage of many years of experience. Thus, the
community is large and there is a wide range of software available. In the long run,
however, the procedural approach cannot live up to the rising requirements for PLCs [6].
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Furthermore, IEC 61131-3 does not make any specifications about cross-compatibility
between different platforms. As a result, a control application written for one piece
of hardware may have to be rewritten from scratch for another controller. To tackle
these drawbacks, IEC 61499 was devised. This standard defines FBs similar to those
in FBD, whose interfaces and behaviour are each programmed using a respective
graphical syntax, a textual syntax and/or Extensible Markup Language (XML). Rather
than being procedural, the graphical applications are object- and event-oriented. The
FBs are not activated in a sequential order, but rather by events, which trigger their
algorithms. This results in a higher flexibility and in the possibility of more complex,
distributed control systems [7]. Moreover, an MVC implementation is possible owing
to the event-oriented nature of the standard. Thanks to the ”IEC 61499 Compliance
Profile for Feasibility Demonstrations” [8], applications developed in compliance with
IEC 61499 can be easily transferred between any IEC 61499 compliant software tools
and can thus be used to configure any IEC 61499 compliant hardware. Additionally,
IEC 61499 compliant devices are interoperable and can communicate with each other.
A disadvantage of the standard is that it has yet to be fully adopted by the industry [6].
As a consequence, the community is comparatively small and the range of available
software/hardware is still limited compared to IEC 61131-3. There is less experience,
which may result in a steeper learning curve.
The advantages and disadvantages of the two PLC standards are summarized in
table 2.1. A ”+” represents an advantage, a ”-” symbolizes a drawback and an ”o”
stands for ”neutral”. The benefits of IEC 61499 far outweigh the drawbacks. Besides, it
is envisaged that IEC 61131-3 will be revised in the future and made compatible with
IEC 61499 [7]. This fact further substantiates the decision to choose IEC 61499 as the
standard on which to base the control applications developed within the scope of this
thesis.

Table 2.1: Advantages and disadvantages of the PLC standards.

IEC 61131-3 IEC 61499

++ Experience - Not yet adopted by the industry
+ Large community - Small community
+ Wide range of software/hardware o Growing range of software/hardware
- - Low flexibility ++ High flexibility
- - Platform dependent ++ Platform independent
- - Little to no interoperability ++ High interoperability
- - Little to no portability ++ High portability
- Designed for centralized systems + Distributed systems possible

- - Limited to simple control systems ++ Complex control systems possible
- Low reliability + High reliability
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2.4. Software selection

There is a variety of software available for the design and deployment of IEC 61499
applications. The tools can be categorized as (i) open source tools, (ii) commercial
(proprietary) tools and (iii) academic/research developments [9]. The latter may be either
open or closed source. Current commercial tools consist of ISaGRAF and NxtONE,
the open-source tools include 4diac, FBench, ICARU FB and GASR-FBE and the
academic/research developments are comprised of the tools, FBDK/FBRT, BLockIDE
and Corfu ESS / Archimedes. The benefits and drawbacks regarding technical support,
costs, usability and transparency for the three software categories are listed in table 2.2.
Proprietary solutions come with the advantages of professional technical support and
releases are often-times more stable than their open-source counterparts. However,
these advantages are not free, while the open-source and academic variants can be
downloaded and used at no cost. Research developments are often poorly documented,
resulting in difficulty learning how to use them. With respect to support, the open-source
software lies between its proprietary and academic counterparts. It is usually well-
documented, but one must rely on user-forums for technical assistance. Nevertheless,
due to the small community in the particular case of IEC 61499, personal experience
has shown that topics posted in the 4diac user forum are answered quickly by the
developers in person. Therefore, the open-source tool 4diac was chosen for this thesis.
4diac provides an integrated development environement (IDE) for the development of
function blocks and applications and a runtime environment called FORTE that can be
run on a large variety of Windows and Linux based hardware.

2.5. Available hardware

Owing to the high portability of IEC 61499 applications and the MVC design approach,
a hardware selection is of minor significance within the scope of this thesis. For the
sake of completeness, a list of exemplary hardware that can be configured with the
devised control application is listed in table 2.3. Vendors that offer IEC 61499 compliant
hardware that can be configured by porting the applications to other IDEs include
Beckhoff, Siemens, Advantech, Mitsubishi, Bosch, Loytech and Schneider Electric,
among others.

Table 2.2: Advantages and disadvantages of the software categories.

Proprietary Open-source Academic/research

Technical support + - - -
Costs - - ++ ++
Learning curve / usability + - - -
Transparency - + +
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Table 2.3: A selection of hardware that can be configured with control applications developed in
4diac.

Hardware Deployment Limitations

Windows/Linux PC Direct None
Lego Mindstorms (EV3) Direct None
RaspberryPi (SPS) Direct None
Odroid Direct None
Wago PFCs SPS Direct None
ICnova Direct None
µMic 200 Direct None
IndraControl XM22 PLC Direct None
nxtDSCmini Port to nxtONE STUDIO Re-configuration neces-

sary in some cases
Any JAVA™ based hard-
ware

Port to FBRT Re-configuration neces-
sary in some cases

It must be noted, however, that so-called service interface function blocks, whose
algorithms are programmed in C++i, cannot be transferred directly to other software
tools. If such function blocks are used, they must be ported over and the affected
applications must be re-configured [10].

iIn the case of 4diac. SIFBs in other IDEs may be programmed in other languages.
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3. The IEC 61499 PLC standard

The following section provides a brief exposition into PLC programming using IEC 61499.
It presents an overview of the standard’s aspects that are relevant to this thesis. Al-
though most of the aspects are standardized, some implementations may vary slightly
between different vendors’ software solutions. Because the open-source program 4diac
is used for development in this thesis, the following subsections lay their focus on the
4diac implementation.

3.1. Function blocks

Function blocks (FBs) are the key elements of the IEC 61499 architecture. They
wrap the underlying algorithms with interfaces that can be combined to develop the
applications. IEC 61499 defines three different types of FBs: Basic function blocks
(BFBs), composite function blocks (CFBs) and service interface function blocks (SIFBs).
All three types share the same interface. The standard furthermore defines a graphical
syntax, a textual syntax and an XML syntax for FBs (and FB applications) [4]. The
definitions of the textual and XML syntaxes, respectively, exceed the scope of this thesis
and are omitted from the following subsections. How to compile the syntax is left up to
the software vendors. For example, 4diac-IDE compiles FBs to C++ classes, which are
used by FORTE.

3.1.1. Function block interface

An example for a FB interface is depicted in figure 3.1. Inputs are on the left side
and outputs on the right. Event inputs and outputs are displayed on the top half of
the FB and data inputs and outputs on the bottom half. The IEC 61499 data type of
an input or output is depicted on the outside of the FB. Every input or output comes
with an optional description. Events and data are linked together with so-called WITH

qualifiers (depicted graphically as square connectors between the event and data inputs

EI1
EI2

EO1
EO2

FB_BFB_EX
1.0

QI1
QI2

QO1
QO2

Data Input 1    -    BOOL
Data Output 2    -    ANY

Event Input 1    -    Event
Event Input 2    -    Event

BOOL    -    Data Output 1
LREAL    -    Data Output 2

Event    -    Event Output 1
Event    -    Event Output 2

Figure 3.1: Example of a FB interface as displayed in 4diac-IDE.
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or outputs). This indicates that the linked data must be sampled upon every occurrence
of the respective event. Each data input or output can be linked WITH one or multiple
event inputs or outputs, respectively. In figure 3.1, the data input QI2 is initialized every
time an EI1 or EI2 event arrives. All other data sockets are linked WITH only one event
socket each. Finally, the FB’s type name and version number are depicted in the middle
of the graphical representation.

3.1.2. Basic function blocks

As the name implies, BFBs are the most simple form of FBs. The internal behaviour
of a BFBs is described with states and algorithms, which are programmed graphically
using an excecution control chart (ECC), as depicted in figure 3.2. If a certain condition
is met (i.e. the arrival of an input event), the BFB switches its state (indicated graphically
with an arrow connector), and if that state is linked to an action, it runs an algorithm
and/or triggers an output event upon completion. Algorithms, in which the data are
manipulated, can be programmed in ST, JAVA™ or C++ [7], whereby ST appears to be
the most widely supported language. Apart from the input and output data, a BFB can
also hold internal variables, which are equivalent to private properties in OOP classes.
Unlike the other states, the initial state the function block starts in is framed with a
double outline.
In the example depicted in figure 3.2, the BFB switches to the Init state upon arrival
of an EI1 input event that is linked to the QI1 data input - if QI1 is set to true. The
initialization algorithm is run, and upon completion, the output event EO1 is triggered to
notify other function blocks. Because the condition for switching to the Initialized

state is set to 1 (equivalent to a boolean true), it switches immediately after issuing the
event. If an EI2 input event occurs, the FB switches to the NormalOp state and runs the
normalOperation algorithm, followed by an EO2 output event, before switching back
to the Initialized state. Lastly, the input event EI1 together with QI1 set to false

triggers the de-initialization process.

START

Init initialize EO1

NormalOp normalOperation EO2Initialized

DeInit deInitialize EO1

State algorithm Event

EI1[TRUE = QI1]

1

1

1

EI2
1

EI1[FALSE = QI1]

2

Figure 3.2: Example of an ECC as displayed in 4diac-IDE.
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3.1.3. Composite function blocks

To create more complex components, multiple FBs can be combined into a CFB. An
example of the internal composite network of a CFB is illustrated in figure 3.3i. The
external interface is exactly the same as that of a BFB. In fact, one cannot tell whether
a function block is a BFB or a CFB just by looking at the interface. A CFB can be
composed of BFBs, lower level CFBs and SIFBs [7]. The inputs of the external interface
are routed to various inputs of the internal FBs (depicted graphically with red arrows for
events and blue arrows for data in 4diac-IDE). Per definition, each CFB data or event
input must be routed either to one or many internal FBs’ inputs or ”through-routed”
to one or many of the CFB’s outputs [7]. Respectively, each output must either be
connected to one of the CFB’s inputs or an internal FB’s input. An internal FB’s output
does not have to be connected to anything.

3.1.4. Service interface function blocks

The links between external devices and function blocks on a control resourceii are
established using SIFBs. As suggested by their name, they provide the application
with an interface to a service. This could be to an Input/Output (I/O) device, such as
an HMI or a CSV (comma separated values) parser or to an external device that is
being measured or controlled on a network. Unlike BFBs and CFBs, SIFBs can usually
be recognized via the interface, due to the fact that the inputs, outputs and their WITH
qualifiers are standardized [7]. However, an SIFB is not forced to implement all of the
inputs and outputs, and can also add additional ones. A complete overview of the
events, data and the WITH qualifiers is provided in figure 3.4.

iThe examples depicted in this section provide no relevant functionality with respect to this thesis, and
were chosen solely for the purpose of demonstration.

iiA resource is what executes function block networks. A device may have multiple resources, e.g., a
PC (device) can run FORTE and FBRT (resources) at the same time.

EI0
EI1
EI2
QI1
QI2

EO0
EO1
QO1

EXAMPLE_FB

EI1
EI2

EO1
EO2

FB_BFB_EX
0.0

QI1
QI2

QO1
QO2

ADDITION

REQ CNF

F_ADD
1.0

IN1
IN2

OUT

EQUALITY
REQ CNF

F_EQ
1.0

IN1
IN2

OUT

EQUALITY2

REQ CNF

F_EQ
1.0

IN1
IN2

OUT
CONVERT

REQ CNF

LREAL2LREAL
1.0

IN OUT

CONVERT2
REQ CNF

BOOL2BOOL
1.0

IN OUT
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Figure 3.3: Exemplary composite network of a CFB as displayed in 4diac-IDE.
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INIT
REQ
RSP

INITO
CNF
IND

FB_SIFB_EX
0.0

QI
PARAMS
SD

QO
STATUS

RD

Event Input Qualifier     -    BOOL
Service Parameters     -    WSTRING
Output data to resource     -    ANY

Service Initialization     -    Event
Service Request     -    Event

Application Response to IND     -    Event

BOOL     -    Event Output Qualifier
WSTRING     -    Service Status
ANY     -    Input data from resource

Event     -    Initialization Confirm
Event     -    Confirmation of Requested Service
Event     -    Indication from Resource

Figure 3.4: Inputs and outputs of a SIFB as displayed in 4diac-IDE.

The boolean data input QI and its equivalent output QO are linked to every input and
output, respectively. They act as so-called event qualifiers, indicating which of two
actions to perform upon arrival of an event in the case of QI; and success or failure of a
request or service in the case of QO.
An overview of the input and output events depending on their qualifiers is listed in
table 3.1. The data input PARAMS holds the service parameters that are used to initialize
the service, and the output STATUS provides a message that accompanies QO. It can be
used to determine the reason a service or initialization failed, for instance. Lastly, every
SIFB can have an arbitrary amount of data inputs SD and outputs RD. For example,
in the case of RD, they could be the values read from a CSV file or received from a
communication service. In the case of SD, they could be the the data that are to be sent
to a communication service or written to a CSV file.
Unlike the internals of BFBs and CFBs, those of an SIFB are not defined in IEC 61499.
They are implemented in the language of the RTE on which they run (C++ in the case
of FORTE and JAVA™ in the case of FBRT, for example). This means that an SIFB
created for FORTE must be re-designed for FBRT, and vice versa. For this reason,
HMI SIFBs that run on FBRT do not run natively on FORTE [11]. To design an SIFB
for FORTE, the interface can be graphically outlined in 4diac-IDE and exported to C++

Table 3.1: Overview of the event inputs and outputs of a SIFB, depending on the qualifier. Q
represents the data input QI and the data output QO, respectively.

Event Q = true Q = false

INIT Service initialization request Service deinitialization request
REQ Request for service Disable request for service
RSP Response to service request (suc-

cess)
Response to service request (failure)

INITO Confirmation of successful initializ-
ation

Confirmation of failed initialization

CNF Confirmation of successful service
request

Confirmation of failed service request

IND Indication of service arrival (suc-
cess)

Indication of service arrival (failure)

12



The IEC 61499 PLC standard

E_CYCLE

START
STOP

EO

E_CYCLE
0.1

DT
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E_SR.S
E_SR.R
E_SWITCH.EI

E_SR.EO
E_SWITCH.EO0
E_SWITCH.EO1

N/D

E_SR.Qt#1s

(a) Application

E_SR

S
R

EO

E_SR
0.2

Q

E_SWITCH

EI EO0
EO1

E_SWITCH
0.1

G

E_CYCLE.EO E_CYCL.START

(b) Subapplication

Figure 3.5: Exemplary function block application (left) and subapplication (right).

header and source files. The respective algorithms can then be programmed in C++.

3.2. Applications and subapplications

To create functioning PLC control systems using IEC 61499, function blocks must
be connected to networks in applications, which can be distributed across devices
and resources. Figure 3.5a shows an exemplary application of a set/reset flip-flop
connected to a clock. The E SWITCH and E SR FBs are combined in a subapplication
(figure 3.5b). Subapplications are very similar to CFBs in that they are composed of
multiple FBs. The main differences are that they can be run on multiple resources and
that their data and events cannot be linked using a WITH qualifier. This is due to the fact
that the input and output data are not stored at the subapplication’s inputs and outputs,
respectively [7].

3.3. Adapters

In some cases, function blocks interact with each other, accessing each others in-
puts and outputs, as shown in figure 3.6a. This can quickly lead to cluttering of
the workspace if many FBs interact with each other in this way. To reduce clutter,
IEC 61499 provides a so-called “adapter concept”, which reduces such interactions to
a reusable interface element on each FB and only one connection between them [7].
The exemplary connection illustrated in figure 3.6a is depicted in figure 3.6b using the
adapter concept. The inputs are reduced to a plug on the output side of the first FB
that is connected to a socket on the input side of the second FB. In 4diac-IDE, the
socket interface must be designed by hand, and the corresponding plug, which simply
mirrors the inputs and outputs of the socket, is generated automatically [11]. The socket
interface, Adapter ex, is marked green in figure 3.6b.
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FB_BFB_EX_2

EI1
EI2

EO1
EO2

FB_BFB_EX
0.0

QI1
QI2

QO1
QO2

FB_CFB_EX_1

EI0
EI1
EI2
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0.0

QI1
QI2

QO1

(a) Without adapter

FB_BFBA_EX

EI2 EO2

FB_BFBA_EX
0.0

QI2 QO2
Plug

FB_CFBA_EX

EI0
EI2

EO0

FB_CFBA_EX
0.0

QI2
Socket

Adapter_ex

EI1 EO1

Adapter_ex
0.0

QI1 QO1

(b) With adapter

Figure 3.6: Exemplary FB connection without an adapter (left) and using an adapter (right).

3.4. Communication protocols

In order for devices to communicate with each other and with external services, com-
munication service interface function blocks (CSIFBs) are used. They are defined in the
IEC 61499 Compliance Profile for Feasibility Demonstrations [8]. CSIFBs are SIFBs
that provide the interface for various communication protocols. It is exactly the same as
that of a regular SIFB, however, the number of inputs SD1..SDn on the sending end
must match the amount of outputs RD1..RDn on the receiving end, and vice versa [11].
Following is a brief description of the basic protocols and the corresponding CSIFB
interfaces.

3.4.1. User Datagram/Internet Protocol

The User Datagram Protocol (UDP) implements the Observer design pattern. One
or multiple subscribers (recipients) listen in on a publisher, connecting via an Internet
protocol (IP) address and a port, whereby the IP address identifies the location of the
device, and the port specifies which subscribers are connected to which publishers.
One publisher can be linked with many subscribers, but each subscriber can only be
connected to one publisher. The subscribers “listen in” on the publisher, which notifies
them whenever data were sent. In the case of IEC 61499 SUBSCRIBER CSIFBs, this
triggers an IND output event (see section 3.1.4). Similarly, a PUBLISHER’s REQ input can
be used to send data to subscribers on another device. An example of an IEC 61499
device communicating with two other IEC 61499 devices is presented in figure 3.7. The
function blocks are colour coded according to the devices they are mapped to. The EO1

output event of the FB BFB EX function block on device 1 (green) triggers the REQ event
of the PUBLISH FB, which sends the data to the SUBSCRIBE A and SUBSCRIBE B FBs
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TRUE
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Figure 3.7: Example of UDP/IP communication between three IEC 61499 devices using
SUBSCRIBE/PUBLISH function blocks.

on devices 2 (purple) and 3 (teal). Each of the subscribers on the receiving end passes
an IND event along with the received data to its respective function block network. The
advantages of UDP/IP are its simplicity and speed, however, it comes with the caveat
of low reliability and the possibility of packet losses due to the lack of acknowledgement
features [6]. Another drawback is that requesting data from an external device requires
multiple sets of publish/subscribe elements, and can quickly become messy.

3.4.2. Transmission Control/Internet Protocol

For higher reliability, the Transmission Control Protocol (TCP), in which every request
must be responded to, is used. Two devices or resources communicate using one
or multiple client and server pairs, which are linked via the IP address of the device
hosting the server and a port number. Each client can be linked to only one server, and
vice versa. For a successful connection, the server must be initialized first. An example
of the communication between two IEC 61499 devices is depicted in figure 3.8. In this
example, the client on device 1 (purple) sends a request to the server every second.
The server on device 2 (teal) receives the integer 3 from the client, and passes it to
the FB BFB EX function block, which performs an action on the data. The FB BFB EX FB
then passes its outputs back to the server, which sends a response event, along with
its linked data, to the client on device 1.

3.4.3. Other communication protocols

Many more advanced communication protocols are based on either UDP, TCP or com-
binations thereof. For example, the widely utilized Modbus protocol can be implemented
by using CLIENT and SERVER function blocks or alternatively by using a CLIENT FB
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E_CYCLE
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EO

E_CYCLE
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Figure 3.8: Example of TCP/IP communication between two IEC 61499 devices using
CLIENT/SERVER function blocks.

combined with PUBLISH/SUBSCRIBE FBs [6]. State-of-the-art communication protocols
supported by 4diac at the time of writing this thesis include OPC Data Access (OPC DA),
OPC Unified Architecture (OPC UA), Modbus TCP, Modbus remote terminal unit (RTU),
openPOWERLINK, and Message Queue Telemetry Transport (MQTT). A detailed
description of the supported protocols exceeds the scope of this thesis. For the use of
one of the protocols with FORTE, the appropriate libraries must be downloaded from
external sources. The function blocks can then be configured to use the protocol via
the ID data inputs.
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4. PVprog - Forecast based charging of PV battery
systems

Following is a description of the PVprog algorithmi [1], a forecast-based charging
strategy for PV battery systems developed at HTW Berlin that has been implemented
in the form of an IEC 61499 function block library as part of this thesis. Its foundation
are location-specific forecasts of the PV generation and the load. The first subsections
compare the operational strategy to that of charging the battery as soon as PV sur-
pluses occur, revealing the benefits of forecast-based battery charging. Thereafter, the
algorithm is explained mathematically and through graphical visualizations.

4.1. Early battery charging with a feed-in limitation through
curtailment

The main objective of this strategy is to utilize the battery primarily for covering the load.
The battery is charged with PV surpluses that exceed the load as soon as possible (see
figure 4.1, left). If the battery reaches its maximum capacity, the grid feed-in power can
increase abruptly, especially on a sunny day. All PV surpluses that exceed the feed-in
limitation are curtailed.

iThe original Matlab® implementation is available for download as open source at https://pvspeicher.
htw-berlin.de/veroeffentlichungen/daten/pvprog/

Figure 4.1: Power flows in a household in which the battery is charged as soon as possible
(left) vs. power flows in a household with forecast-based battery charging (right).
The feed-in power is limited to 50 %. Installed PV power: 5 kWp, usable battery
capacity: 5 kWh.
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4.2. Forecast-based battery operation with a dynamic feed-in
limitation

This strategy ensures that the battery is only charged with PV surpluses that exceed a
virtual feed-in limit which is determined by simulating battery charging over a forecast
horizon taking PV generation and load forecasts into account. The power flows of a
household with forecast-based battery charging are depicted in figure 4.1 (right) for
the same day as in figure 4.1 (left). The temporal shift of the battery charging from
morning to noon allows a reduction of the curtailment losses while maintaining a high
self-consumption rate of the system. Additionally, the battery spends less time in a high
state of charge SoC, and therefore, in the case of a lithium-ion battery, has an extended
calendar life in comparison with one that is charged as soon as possible [12].
A substantial benefit of forecast-based operational strategies lies within the grid re-
lief [13], [14]. The simulated cumulative power flows of PV battery systems that are
distributed across Germany are depicted in figure 4.2. Early charging (figure 4.2, left)
results in the phenomenon that most of the batteries have reached maximum capacity
by noon. As a result, the peak grid feed-in power is barely reduced. Compared to
systems without batteries, the gradient of the feed-in power is in fact increased [14].
Due to the forecast-based dynamic feed-in limitation, battery charging is mostly moved
to noontime, resulting in far lower ramp rates [13], [14].

4.3. PV power forecasts

To achieve sufficiently accurate forecasts of the PV generation without having to resort
to a costly external communication infrastructure, the PVprog algorithm implements an

Figure 4.2: Cumulative power flows of households in which the battery is charged as soon as
possible (left) vs. those of households with forecast-based battery charging (right).
Simulation of 46,126 households distributed across Germany with a mean installed
PV capacity of 5 kWp and a mean usable battery capacity of 5 kWh.

18



PVprog - Forecast based charging of PV battery systems

Figure 4.3: Dynamic adjustment of the PV forecasts during the course of the day.

adaptive day persistence. Every 15 min, the forecasts are re-calculated with updated
measurements. The dynamic adjustment of the PV forecasts during the course of the
day is visualized in figure 4.3 using an exemplary sunny day that follows after a very
cloudy day. On top, the real PV generation and the forecasts are superimposed with
different shades of grey. The bottom subplots show the forecasts at three different
points in time. In the morning, a low PV generation is predicted, however, by 6 AM, the
algorithm recognizes that the predicted power was under-estimated. The forecast is
adjusted to an increased power, and after only a few hours it is almost equal to the real
PV generation.
To generate forecasts, the historical PV power Ppv and the maximum PV power of
the last 10 days Ppv,max, which is an approximation of the clear-sky generation Ppv,cs,
are required. Ppv,max at a given time of day is the maximum of the PV power at the
exact same time of day within the last 10 days. After removal of the night time values,
the energy sums of Ppv and Ppv,max, respectively, are determined from a persistence
time frame. Starting at the point in time t0, the persistence time frame is the interval
[t0, t− 1 min]. The fraction of both energy sums is the forecast clearness index kTf.

kTf(t) =

∫ t−1 min
t0

Ppv dt|Ppv>0∫ t−1 min
t0

Ppv,max dt|Ppv,max>0

(4.1)

At every optimization time topt (every 15 min), the current 15 min mean kTf,15 of kTf is
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used as a scaling factor for the 15 min mean of the clear sky approximation Ppv,max15 for
the current day. This results in the PV forecast Ppv,f [15].

kTf,15(topt) =

∫ topt

topt−15 min kTf(t) dt

15 min
(4.2)

P pv,max15(t) =

∫ t

t−15 min Ppv,max(t) dt

15 min
(4.3)

Ppv,f(t) = kTf,15(topt) · P pv,max15(t) (4.4)

4.4. Load forecasts

The load forecasts are updated dynamically in the same intervals as the PV power
forecasts. A day persistence Pload,fP(t) is taken from the interval [topt− 24 h, topt− 9 h], a
time frame of 15 h, which is equivalent to the forecast horizon on the day before. It is
weighted with the mean load P load,15 of the last 15 min before topt using an exponential
weighting function (see figure 4.4, top) [15].

P load,15(topt) =

∫ topt

topt−15 min Pload(t) dt

15 min
(4.5)

Figure 4.4: Weighting functions of the load forecast components over the forecast horizon (top)
and dynamic adjustment of the load forecast (bottom).
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The function wlfP(t) for the time-variable weighting of Pload,fP over the forecast horizon
[topt + 1 min,topt + 15 h] is given by equation 4.6.

wlfP(t) = exp(0,1) · exp
(
− 0,1 · t− topt + 1 min

1 min

)
(4.6)

Using the corresponding function wlc(t) = 1− wlfP(t) for the weighting of P load,15(topt),
the load forecast Pload,f is calculated as

Pload,f(t) = wlfP(t) · PlfP(t) + wlc(t) · P load,15(topt) (4.7)

Figure 4.4 (bottom) visualizes the dynamic adjustment of the load for part of a selected
day. At times of low consumption (leftmost), the short-term forecast predicts an ongoing
low consumption. When load peaks occur (middle, rightmost), the algorithm increases
the load prediction of the short-term future. Due to the course of the weighting curve
wlc(t), the predicted load gradually decreases over the forecast horizon.

4.5. Battery charge and discharge optimization

The battery charge and discharge optimizations are performed by iterating through
various virtual feed-in limits between 0 and the set feed-in limit with a subsequent
battery pre-simulation. With respect to the feed-in limitation, an optimum is found when
the battery simulation indicates that further increasing the dynamic feed-in limit would
result in a lower SoC at the end of the forecast horizon. In the case of load limitation,
which utilizes the same approach ”in reverse”, an optimum is found when the simulation
suggests that further incrementing the load limit would result in a higher SoC at the end
of the forecast horizon. Intermediate discharging and charging are neglected for the
charge and discharge simulations, respectively. The slight negative effect this has on
the system’s degree of self-sufficiency compared to a linear optimization algorithm is
negligible [15].

Figure 4.5: Dynamic adjustment of the battery charge/discharge roadmap.
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The result of the iteration is the dynamic charge/discharge roadmap shown in figure 4.5.
Pbat,f, the power with which the battery must be charged in order to realize the determ-
ined optimum, is the optimization algorithm’s output. This approach is slightly different
than that of the original Matlab® implementation [1], designed with a looser coupling
between the battery model and the optimizer in mind (see section 5.1.5). Nevertheless,
the end results are almost identical, as the Matlab® validation in section 6.3.1 proves.
On a side note, load peak shaving is not implemented in the original algorithm.

4.6. Battery pre-simulation

To be able to estimate the battery’s SoC at the end of the forecast horizon, it is
necessary to perform a pre-simulation. It is advisable that any vendor who uses the
PVprog algorithm for forecast-based charging implement the battery model themselves.
A simple model is included in the original PVprog simulation model [1], and a slightly
altered version is included as the default in this implementation. The alterations were
made to make the model easier to parametrize from data sheets. For example, the
original model regards the SoC as the fraction between the battery’s current capacity
and its usable capacity Cbu. This model has been adapted to fit the more common
interpretation of the SoC as the division of the current capacity by the battery’s nominal
capacity Cbn. The model used in this thesis is described as follows:
The amount of energy stored within the battery is determined from the SoC and the
nominal capacity,

Ebat = SoC · Cbn (4.8)

whereby the minimum and maximum amounts Ebmin and Ebmin are limited by the min-
imum and maximum SoC, respectively.

Ebat,max = SoCmax · Cbn (4.9)

Ebat,min = SoCmin · Cbn (4.10)

For charging with a given amount of energy E, the battery’s and inverter’s charging
efficiencies ηbat,c and ηbinv,c are taken into account. The energy contents at the end of
the forecast horizon are estimated as

Ebat(topt + 15 h) = min(Ebat,max, Ebat(topt) + E · ηbat,c · ηbinv,c) (4.11)

Likewise, for discharging, the battery’s and inverter’s discharging efficiencies ηbat,d and
ηbinv,d are considered.
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The remaining energy contents at the end of the forecast horizon are given by

Ebat(topt + 15 h) = max(Ebat,min, Ebat(topt)− E · ηbat,d · ηbinv,d) (4.12)

4.7. Error control

To ensure that the system adheres to the set feed-in and/or load limitations, the previ-
ously optimized charging/discharging power is continuously adjusted by the difference
between the last forecast and the current measurement. Because the battery roadmap
is refreshed routinely (every 15 min), updated PV and load forecasts can be taken into
account and deviations of the SoC between the corrected and original roadmaps can
be compensated. The error control occurs under one of the following conditions:

• The current set value of the battery charge/discharge is not zero.

• The current prediction of the PV surplus or load deficit (absolute valuei) is greater
than the maximum of the predicted feed-in power or grid purchase, respectively,
within the forecast horizon.

• The current PV surplus is greater than the set feed-in limit or the current PV deficit
is lower than the set load limit.

The corrected set power Pbat,c/d is given by equations 4.13 and 4.14 for charging and
discharging, respectively.

Pbat,c = max(0, Pbat,cf + (Ppv − Pload)− (Ppv,f − Pload,f)) (4.13)

Pbat,d = min(0, Pbat,df + (Ppv − Pload)− (Ppv,f − Pload,f)) (4.14)

In the original simulation model [1], the error control algorithm limits the battery charge
and discharge set value by the maximum and minimum power permitted by the battery
inverter. This is not necessary in a practical application due to the fact that battery
manufacturers implement this limitation in their batteries for reasons of security. The
charge/discharge power restriction step can safely be omitted from the error control
algorithm, thus enabling a looser coupling of the battery model and the control algorithm
(see section 5.1.6). If, however, a battery were not to feature power limitations, the
restriction can be added without much effort.

4.8. Overview

An overview of the PVprog algorithm and the composition of its components with the
energy and information flow directions is depicted in figure 4.6.

iIn this context, PV deficits, grid supply and battery discharge are normally represented by negative
values.
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Figure 4.6: Schematic representation of the PVprog control loop with all energy and data flows.

The PV and load forecasts are passed on to the optimization iteration, and the battery’s
current SoC is sent to the battery model. The optimizer delegates the forecasts to the
model, and in return receives the capacity at the end of the forecast horizon. It then
passes the results to the error control, which compares the forecasts with the current
measurements, and adjusts the optimizer’s output accordingly. Finally, the adjusted
charging/discharging power is sent to the battery as the set value. As shown by the
colour-coded energy flows, the PV power is primarily used to cover the load (direct
consumption). The paths of surplus PV power and PV deficits depend on the error
control and on whether a feed-in or grid supply limitation is enabled, or both. If the
feed-in limitation is enabled, the surpluses are either fed into the grid or used to charge
the battery. If not, they are used for charging until the battery is full, and then fed into
the grid. With load peak shaving enabled, PV deficits are covered by the grid or by
battery discharge. Otherwise, the battery is discharged first, and the remaining deficits
are pulled from the grid when full capacity has been reached.
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5. PV system function block libraries

As part of this thesis, a set of IEC 61499 function block librariesi were created for the
control of PV energy systems as described in section 1.2. Documented in this section
are the FB interfaces and their internals. The underlying ST algorithms and the function
blocks’ internal variables can be examined in the published source code.

5.1. PVprog function block library

To make it possible to run PVprog optimization on an IEC 61499 PLC application, the
components described in section 4 were implemented as function blocks in 4diac-IDE.

5.1.1. PowerForecaster function block

The PowerForecaster was created as an abstract template BFB for the PVForecaster

and LoadForecaster BFBs (see sections 5.1.2 and 5.1.3, respectively). Potential new
function blocks can be based on the PowerForecaster template to save time when
designing the interface and ECC. The PVForecaster and LoadForecaster both share
the PowerForecaster’s interfaceii and implement the ECC with some slight extensions.
The interface is depicted in figure 5.1. Initialization occurs with the INIT event, and the
QI input set to trueiii. Additionally, the INIT event requires the data inputs TLB and TLF,
the time frame to look back for forecast generation and the forecast horizon, respectively.
In an application, these inputs can either be set as constants (recommended) or as
variables that can be set by the user. The default values are 3 h for TLB and 15 h for
TLF. For normal operation, the FB has two event inputs. The input UD is linked to the
data inputs P (The power measurement), DOY the day of the year and TD (the time of
day, given in minutes since 12 AM).

iThe libraries have been made available as open source at: https://github.com/MrcJkb/

PVTControllerLib.
iiThe LoadForecaster FB omits the TLB data input because it must be the same as the TLF input.
iiiThis is the case for most function blocks that need to be initialized. In all further descriptions, the

explanation of the QI data input is omitted for brevity.

INIT
UD
FREQ

INITO
UDCNF

FCNF
PowerForecaster

1.0
QI
TLB
TLF
P
DOY
TD

QO
PF

Input event qualifier     -    BOOL
Time frame to look back when generating forecasts in h     -    LREAL

Time frame to forecast ahead (look forward) in h     -    LREAL
Measured power in W     -    LREAL
Day of the year [1..365]     -    UINT

Time of day [min] [0..1439]     -    UINT

Initialization Request     -    Event
Forecast Update Request     -    Event

Forecast Request     -    Event

BOOL     -    Output event qualifier
LREAL[96]     -    Forecasted power in W

Event     -    Initialization Confirm
Event     -    Update Algorithm Execution Confirmation
Event     -    Forecast Confirmation

Figure 5.1: Interface of the PowerForecaster, PVForecaster and LoadForecaster
function blocks.
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START

Init initialize INITO

UpdateOp analyzeInputs

Initialized

DeInit deInitialize INITO

Forecasting getForecast FCNF

Interpolation interpolate

NormalUpdate updateMemory

EndUpdateOp prepareForNextUpdate UDCNF

InterpolatedUpdate updateMemory

NormalUpdateInit initNormalUpdate

InterpolationInit initInterpolation

INIT[TRUE = QI]

1

1

[TIMESINCELASTUPDATE = 1]

1

[TIMESINCELASTUPDATE > 1]

2

INIT[FALSE = QI]

1

FREQ

1

1

1

[TIMEINDEX < (TD - 1)]

1

1

1
[TIMEINDEX >= (TD - 1)]

2Figure 5.2: ECC of the PowerForecaster function block: Initialization.

It requests an update of the stored data and issues an UDCNF event after completion of
the internal algorithms to confirm a successful update. The FREQ event requests a new
forecast, resulting in the FCNF output event along with the predicted power PF, an array
holding up to 96 values. This represents a forecast horizon of up to one day with a value
for every 15 min interval. Forecast horizons above 24 h are invalid, due to the limited
array size. If the forecast horizon is set below 24 h, any values of PF that exceed the set
time frame should be ignored by the FBs that interpret the data. It must be noted that
the TD data input is an unsigned integer. As a result, only one minute running means
of the power measurements should be passed to the P input. Sending a UD request
more frequently than once per minute would result in the stored data from the previous
requests being overwritten until TD is incremented.
In order to provide a more comprehensive overview of the FB’s internal functionality,
the ECC is split into multiple figures. Figure 5.2 shows the initialization process. It
is exactly the same as the example described with figure 3.2, and thus does not
require further explanation. In the initialize algorithm, the internal variables are
set according to the TLB and TLF data inputs. The deInitialize algorithm resets
the internal memory, and thus the forecast array PF to zeros. The rest of the ECC
is illustrated in figure 5.3. A UD event puts the FB into the UpdateOp state, in which
the analyzeInputs algorithm is run. This determines the time since the last update
and saves it to the internal variable, TIMESINCELASTUPDATE, among other things. With
normal timing, i.e. one minute intervals between the updates, the initNormalUpdate

algorithm is run, immediately followed by the updateMemory algorithm, which caches
the data into the appropriate memory locations for later forecast generation. If for
some reason one or more minutes have been skipped since the last update operation,
the data for the missed updates is interpolated linearly. The updateMemory algorithm
does not store the data inputs directly, but works with internal variables that are set
by the initNormalUpdate, initInterpolation and interpolate algorithms. While
initNormalUpdate simply sets the internal variables equal to the corresponding data
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inputs, initInterpolation sets the power equal to that of the last UD request. Then,
interpolate increments the power in a linear manner every time the algorithm is
called, until the interpolated data for one minute before the current time is stored.
Thereupon, the FB switches to the NormalUpdateInit and then to the NormalUpdate

state. In the last state of the update operation, the prepareForNextUpdate algorithm
stores the P and TOD data inputs in case an interpolation is necessary in the next UD
request. Finally, the FB returns to the Initialized state and waits for additional event
inputs.
Upon arrival of an FREQ event, the FB switches to the Forecasting state and runs the
getForecast algorithm, before outputting a UDCNF event. This generates the PF data
output. In the case of the PowerForecaster function block, the updateMemory and
getForecast algorithm implementations are actually abstract, i.e. undefined, and must
be implemented by the actual forecaster FBs. For correct operation, it is critical that the
sequence of states that occurs after a UD event is finished and that the FB returns to
the Initialized state before the arrival of an FREQ event. Otherwise, the FREQ event
is ignored and forecasts are not generated. The correct timing of events in ensured by
the FB FORECAST TIMER function block, which is described in section 5.1.9.

5.1.2. PVForecaster function block

An excerpt of the PVForecaster’s ECC that illustrates the extensions to the template is
depicted in figure 5.4. Since night time values are disregarded for the computation of kTf

(see equation 4.1), at powers equal to zero, the FB jumps straight to the EndUpdateOp

state, storing the inputs and issuing a UDCNF event. Additionally, for internal array
indexing reasons, the update sequence is skipped on the first and last minutes of the
day to avoid runtime errors. Since the PV power should be zero at these times, this

START

Init initialize INITO UpdateOp analyzeInputs

Initialized

DeInit deInitialize

Forecasting getForecast FCNF

Interpolation interpolate

NormalUpdate updateMemory

EndUpdateOp prepareForNextUpdate UDCNF

InterpolatedUpdate updateMemory

NormalUpdateInit initNormalUpdate

InterpolationInit initInterpolation

INIT[TRUE = QI]

1

1

[TIMESINCELASTUPDATE <= 1]

1

[TIMESINCELASTUPDATE > 1]

2

UD

3

INIT[FALSE = QI]

FREQ

2

1

1

1

1

[TIMEINDEX < (TD - 1)]

1

1
1

[TIMEINDEX >= (TD - 1)]

2

Figure 5.3: ECC of the PowerForecaster function block: Normal operation.
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START

Init initialize INITO

UpdateOp analyzeInputs

Initialized

DeInit deInitialize

deInitializePV INITO

Forecasting getForecast FCNF

Interpolation interpolate

NormalUpdate updateMemory

EndUpdateOp prepareForNextUpdate UDCNF

InterpolatedUpdate updateMemory

NormalUpdateInit initNormalUpdate

InterpolationInit initInterpolation

INIT[TRUE = QI]

1

1
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1

[(TIMESINCELASTUPDATE <= 1 AND TD > 0 AND TD < 1439)]

2

[(TIMESINCELASTUPDATE > 1 AND TD > 0 AND TD < 1439)]

3

INIT[FALSE = QI]

1

FREQ

2

1

1
1

1

[TIMEINDEX < (TD - 1)]

1

1

1

[TIMEINDEX >= (TD - 1)]
2

UD[P > 0]

3

UD[P <= 0]

4

Figure 5.4: Excerpt of the PVForecaster function block’s ECC.

addition may seem unnecessary. It was added; nonetheless, for increased stability. The
last extension to the ECC is the addition of a deIntitializePV algorithm, which is run
after deInitialize and resets PVForecaster-specific internal variables to zero.

5.1.3. LoadForecaster function block

The LoadForecaster’s ECC is exactly the same as that of the PowerForecaster tem-
plate, with the addition of two initialization algorithms and one de-initialization algorithm.
The corresponding portion of the ECC is depicted in figure 5.5. The initializeLoad

and deInitializeLoad algorithms initialize and de-initialize LoadForecaster-specific
internal variables. Finally, the weighting functions wlfP and wlc are initialized according
to equation 4.6 within the initializeWeights algorithm.
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Init initializeLoad

initialize

initializeWeights INITO

UpdateOp analyzeInputs

Initialized

DeInit deInitialize

deinitializeLoad INITO

Forecasting getForecast FCNF

Interpolation interpolate

NormalUpdate updateMemory

EndUpdateOp prepareForNextUpdate UDCNF

InterpolatedUpdate updateMemory

NormalUpdateInit initNormalUpdate

InterpolationInit initInterpolation

INIT[TRUE = QI]

1

1

[TIMESINCELASTUPDATE <= 1]

1

[TIMESINCELASTUPDATE > 1]

2

INIT[FALSE = QI]

1

FREQ

1

1

1

[TIMEINDEX < (TD - 1)]

1

1

1
[TIMEINDEX >= (TD - 1)]

2

Figure 5.5: Excerpt of the LoadForecaster function block’s ECC.
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The only other alteration made from the template is the omission of the TLB data
input. This was done due to the fact that the load forecasting algorithms require the
day persistence time frame to be exactly the same size as the forecast horizon (see
section 4.4). As a result, only one input, TLF is required. The PVForecaster and
LoadForecaster implementations of the updateMemory and getForecast algorithms
operate according to the corresponding equations in sections 4.3 and 4.4, respectively.

5.1.4. Battery model function blocks

The battery model described in section 4.6 is provided by the SimpleBatteryModel

FB. Its interface is depicted in figure 5.6. To simplify the interconnection with the
BatteryOptimizer FB (see section 5.1.5), the adapter concept (see section 3.3) is
used. The adapter’s outputs depicted in figure 5.6b represent inputs of the FB, and
vice versa. Most of the function block’s inputs are constant parameters that can be set
according to battery data sheets. There are two input events. SIM requests a battery
simulation with the data input ECD representing the requested energy over the simulated
time frame in kWh. The SIM event is meant to be triggered by the BatteryOptimizer

FB. After a completed simulation, a SIMIN event is sent out along with the estimated
capacity at the end of the forecast horizon. UD is used to update the battery model with
a new SoC, and should be triggered by the physical battery that the model represents.
A successful update issues a UDCNF confirmation event. The ECC is illustrated in
figure 5.7. It does not require any initialization, and starts in the Idle state, in which it
awaits either a SIM or UD event.

UD UDCNF

SimpleBatteryModel
1.0

SOC
CN
EB_IN
EB_OUT
EBI_IN
EBI_OUT
SOCMAX
SOCMIN

BatteryOptimizerSck

State of charge of the battery - LREAL
- LREAL
- LREAL
- LREAL

Nominal battery capacity (energy)
 Battery efficiency when charging 

Battery efficiency when discharging Battery 
inverter efficiency when charging - LREAL

- LREAL
- LREAL

Battery inverter efficiency when discharging 
Upper limit to SOC (as specified by manufacturer)  
Lower limit to SOC (as specified by manufacturer) - LREAL

Link to BatteryOptimizer FB -         ABatteryModel

Update Request     -    Event Event     -    Update Confirmation

(a) SimpleBatteryModel FB interface

SIMIN SIM

ABatteryModel
0.0

CSIM ECDBattery capacity after simulation - LREAL

Battery Simulation Response - Event

LREAL    -    Charging (positive)/discharging (negative) energy

Event     -    Battery Simulation Request

(b) ABatteryModel socket interface

Figure 5.6: Interfaces of the SimpleBatteryModel function block (top) and the
ABatteryModel adapter socket (bottom).
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Idle Simulating simulateBattery BatteryOptimizerSck.SIMIN

Updating updateEnergyContents UDCNF

BatteryOptimizerSck.SIM

1

UD

2

1

1

Figure 5.7: The SimpleBatteryModel function block’s ECC.

In addition to updating the SoC, the updateEnergyContents algorithm also re-computes
the maximum and minimum battery capacities, in case for some reason the SoC lim-
its are changed during operation. It implements equations 4.8 through 4.10. The
simulateBattery algorithm works according to equations 4.11 and 4.12.
It is envisaged that vendors who make use of the library developed within the scope of
this thesis implement their own battery model to replace the SimpleBatteryModel. In
such a case, the interface provided by the ABatteryModel adapter should be used as a
basis. Another function block that was added to the library and can be used to represent
the battery model is the BatteryModelClient CFB shown in figure 5.8. It acts as a
wrapper for a CLIENT 1 CSIFB (see section 3.4.2) and can be used to delegate the
battery modelling to an external serveri. This may be practical for the use with a device
or simulation program that is capable of pre-simulating the battery.

5.1.5. BatteryOptimizer function block

The battery charge optimization is implemented in the BatteryOptimizer function
block. Its interface is depicted in figure 5.9. To interconnect with a battery model, the
FB utilizes an ABatteryModel plug, which mirrors the socket shown in figure 5.6b.
The REQ event (along with the CNF output) are used to trigger the optimization iteration

iAn equivalent function block, BatteryModelServer, was also created.

INIT INITO
BatteryModelClient

1.0
QI
ID

BatteryOptimizerSck

QO
STATUS

Input event qualifier     -    BOOL
Connection Identifier     -    WSTRING

Link to BatteryOptimizer     -    ABatteryModel

Initialization Request    -    Event

BOOL    -    Output event qualifier
WSTRING    -    Service Status

Event    -    Initialization Confirm

(a) BatteryModelClient
FB interface

INIT
QI
ID

BatteryOptimizerSck
SIMIN SIM

ABatteryModel
0.0

CSIM ECD

CLIENT_1
INIT
REQ

INITO
CNF

CLIENT_1
0.0

QI
ID
SD_1

QO
STATUS

RD_1

INITO
QO
STATUS

(b) BatteryModelClient composite network

Figure 5.8: Interface (left) and composite network (right) of the BatteryModelClient func-
tion block.

30



PV system function block libraries

INIT
REQ

INITO
CNF

BatteryOptimizer
1.0

QI
TLF
PDIFF
FL
LL

QO
PBR

BatteryModelPlg

Input event qualifier - BOOL
- LREALForecast horizon

Power difference forecast - LREAL[96]
- LREALFeed-in limitation

Grid supply limitation - LREAL

Initialization Request     -    Event
Normal Execution Request     -    Event

BOOL    -    Output event qualifier
LREAL[96]    -    Battery charge/discharge roadmap

ABatteryModel - Link to battery model

Event     -    Initialization Confirm
Event     -    Execution Confirmation

Figure 5.9: Interface of the BatteryOptimizer function block.

described in section 4.5. It requires the predicted power difference Pd,f, stored within
the input array PDIFF, which is equal to Ppvf − Pldf. In addition, the event is linked to
the set load limit and the PV feed-in limit. To disable a limitation, the respective data
input must be set to zero. Normally, the feed-in limitation is given in kW/kWp, but in
this case, W was chosen as a unit for congruency with the load limit, and so as to
simplify the interface. Taking the value in kW/kWp would require the nominal PV power
as an additional input. Resulting from the optimization iteration sequence is the PBR

output, which holds the battery charge roadmap (power in W) for the forecast horizon.
The usage of the BatteryModelPlg adapter plug’s SIMIN and SIM events, which are
intended for coupling with the battery model, shall be disclosed later in this section.
An excerpt of the ECC (excluding the initialization, which is the same as that of the
PowerForecaster FB) is pictured in figure 5.10. Regarding the feed-in (FL) and load
(LL) limitations, there are four possibilities:

i) Feed-in limitation

ii) Load peak shaving

iii) Both (i) and (ii)

iv) Neither (i) nor (ii)

Initialized

IncrementFeedInLimit prepareChargeSim BatteryModelPlg.SIM

IncrementLoadLimit prepareDischargeSim BatteryModelPlg.SIM

InitChargeOptimization initChargeOptimization

InitDischargeOptimization initDischargeOptimization

NoOptimization noLimitOperation CNF

AnalyseResults findOptimalLimits

Optimization optimizedOperation CNF

InitOpt initOptimization

1

1

[BatteryModelPlg.SIMIN]

1
[(FLFLAG = TRUE)]

1
[BatteryModelPlg.SIMIN]

1
[LLFLAG = TRUE]

4

[(INITLL = TRUE AND FLFLAG = FALSE)]

3

[(FLFLAG = FALSE AND LLFLAG = FALSE AND INITLL = FALSE)]

2

[(FL = 0 AND LL <> 0)]

1

[(FL = 0 AND LL = 0)]

2

[FL <> 0]

3

REQ2

Figure 5.10: Excerpt of the BatteryOptimizer function block’s ECC. Note: In ST, <> is the
symbol for “not equal to”.
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Option (iv) is technically redundant, since running the controller in such a mode would
defeat the purpose of the PVprog algorithm. Nevertheless, it was included in the ECC
for stability reasons. Rather than creating a separate initialization sequence for each of
the options (i) through (iv), two sequences that merge together were created for the
ECC. In the InitOpt state, this reduces the option checks upon arrival of the REQ event
to:

i) Feed-in limitation

ii) Load peak shaving without a feed-in limitation

iii) Neither (i) nor (ii)

In both iterations, a factor is incremented between 0 % and 100 % of the respective set
limits. If case (i) occurs, the sequence beginning with the InitChargeOptimization

state is triggered. The boolean flags, FLFLAG, LLFLAG and INITLL are initialized to
indicate which limitations are enabled. Then, the feed-in limit factor is initialized to −1 %,
and subsequently incremented by 1 %, thus starting the iteration with a feed-in limit of
0 W. This takes place in the prepareChargeSim algorithm, which determines the PV
surpluses above the virtual feed-in limit and sends a SIM event along with the charging
energy over the forecast horizon to the battery model. The function block remains in the
IncrementFeedInLimit state until a SIMIN response arrives. The BatteryOptimizer

and battery model FBs are separated in this way to enable loose coupling. This makes
it possible to replace the SimpleBatteryModel FB with a custom model without having
to make any changes to the BatteryOptimizer FB. An illustration of how the two FBs
interact with each other (as it would look without the use of an adapter) is presented
in figure 5.11. The SIM output event of the BatteryOptimizer triggers the SIM input
event of the battery model.

SimpleBatteryModel

SIM
UD

SIMIN
UDCNF

SimpleBatteryModel
1.0

SOC
ECD
CN
EB_IN
EB_OUT
EBI_IN
EBI_OUT
SOCMAX
SOCMIN

COUT

BatteryOptimizer

INIT
REQ
SIMIN

INITO
CNF
SIM

BatteryOptimizer
1.0

QI
TLF
PDIFF
FL
LL
CSIM

QO
PBR
ECD

Figure 5.11: Interaction between the BatteryOptimizer and SimpleBatteryModel FBs.
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Upon completion of the simulation, a SIMIN confirmation event is sent back to the
BatteryOptimizer with the battery’s estimated capacity at the end of the forecast
horizon. Back in the ECC (figure 5.10), the BatteryOptimizer switches to the
AnalyseResults state. Here, the results of the current simulation are compared
to those of the last one. If an optimum (see section 4.5) is not found, the function
block switches back to the IncrementFeedInLimit state, and the iteration continues.
Once an optimum is found, the FB either performs the same optimization sequence
for the load limit (if the LL data input was set to something other than zero and no
load limit optimization has been completed) or it continues to the Optimization state.
Here, the optimizedOperation algorithm computes the battery charge roadmap using
the determined optima, before outputting a CNF event. Finally, the FB returns to its
Initialized state, in which it awaits new requests.

5.1.6. ProgErrCtrl function block

Error controlling (see section 4.7) in the IEC 61499 PVprog implementation is handled
by the ProgErrCtrl FB. Its interface is depicted in figure 5.12. The required data inputs
are the forecast horizon (for initialization), the battery charge roadmap (generated by
the BatteryOptimizer function block), the current PV power, the load and the feed-in
and load limitations. With CNF, the FB outputs PB, the set value for the battery charging
power in W. Figure 5.13 illustrates the ECC (excluding the initialization sequence). The
function block utilizes two boolean flags to determine which states to switch to. CCFLAG
indicates whether all of the control conditions listed in section 4.7 are met (true) or
not (false). BCDFLAG specifies charging (true) and discharging (false). Starting
from the Initialized state, a REQ event triggers the initErrControl algorithm,
which determines whether the battery needs to be charged or discharged. If either
is the case, BCDFLAG is set accordingly and CCFLAG is set to true. This results in the
aforementioned control conditions being checked, after which CCFLAG is set again. If
the conditions are met, the forecast error is corrected according to equations 4.13
or 4.14 for charging and discharging, respectively.

INIT
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INITO
CNF

ProgErrCtrl
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QI
TLF
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PDIFF
PPV
PLD
FL
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Input event qualifier    -    BOOL
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Battery charge roadmap over the forecast horizon -  LREAL[96]
 Power difference forecast    -    LREAL[96]

Current PV power    -    LREAL
Current load    -    LREAL

Feed-in limitation    -    LREAL
Load limit    -    LREAL

Initialization Request     -    Event
Normal Execution Request     -    Event

BOOL    -    Output event qualifier
LREAL    -    Set battery charging power 

Event     -    Initialization Confirm
Event     -    Execution Confirmation

Figure 5.12: Interface of the ProgErrCtrl function block.
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Correction correctSetPower

[CCFLAG = TRUE]

1

[CCFLAG = FALSE]

2

REQ
1

1

1

1

[CCFLAG = FALSE]

1

[CCFLAG = TRUE]
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Figure 5.13: Excerpt of the ProErrCtrl function block’s ECC.

Otherwise, the power difference is set to zero to prevent a stepped adjustment of the
dynamic feed-in and load limits, before switching to the NoControl state, in which PB is
simply set equal to the difference between PPV and PLD. As mentioned in section 4.7, a
limitation of the battery’s charging and discharging power to the battery inverter’s limits
was omitted from this implementation. Including it would require appropriate inputs
to the interface, resulting in a tighter coupling between the ProgErrCtrl FB and the
battery model, which would be undesirable. Here, the controlled battery must take over
the job of limiting its set power, which is usually the case. If a battery inverter were not
to limit the requested power for some reason, the IEC 61131-3 function block F LIMIT

could be appended to the PB output of the ProgErrCtrl FB.

5.1.7. Event synchronization

When handling multiple events that are issued in parallel in an IEC 61499 application,
timing and synchronization can become a challenge. The following subsections deal
with event synchronization used within the PVprog function block library.

5.1.8. Splitting and Rendezvous

In the case of the forecasters, two events, UD and FREQ, which each must be split
and merged, are handled. It must be ensured that both the PVForecaster and
LoadForecaster FBs have finished their operation before the optimization is triggered.
For this purpose, two function blocks from the 4diac library are used: E SPLIT and
E REND. The former is straightforward, and simply splits an incoming event into two
output events. The latter merges two input events in such a way that the FB only outputs
an event when both input events have been triggered at least once in a so-called “event
rendezvous”. An example is illustrated in figure 5.14.
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Figure 5.14: Usage of the E SPLIT and E REND function blocks.

The event rendezvous gets its name because a simple merge would output one event
for each input event, thus triggering an output twice after receiving events from the
PVForecaster and LoadForecaster FBs. A rendezvous outputs only one event when
both input events have arrived.

5.1.9. Event timing

For fast performance without a significant loss of accuracy [15], it may be preferable to
compute the forecasts in 15 min intervals instead of every minute, while updating the
memory every minute. This can be achieved with clocks; but due to the forecasters’
heavy reliance on the time of day, a method that utilizes time stamps is more reliable.
At the same time, it must be ensured that the forecasters’ memory update sequences
(triggered by the UD event) have completed before an FREQ event is received. Oth-
erwise, the FREQ event will be ignored (see section 5.1.1). All of this functionality is
combined in the FB FORECAST TIMER function block, depicted in figure 5.15. The FB
“translates” a series of REQ events into UD and FREQ events. Using the RS data input, the
frequency with which the FREQ outputs are issued can be set. The remaining inputs,
DOYIN and TDIN (excluding initialization), are required for internal synchronization in
case a temporary failure results in the forecast computation being skipped. To ensure
that the forecaster function blocks have completed their memory update sequences, an
FREQ event is only triggered once they have issued their UD events, which are routed to
the UDCNF event input.
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INIT
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FB_FORECAST_TIMER
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DOYIN
TDIN
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Input event qualifier     -    BOOL
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Initialization Request     -    Event
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UINT     -    Time of day [min] [0..1439]

Event     -    Initialization Confirm
Event     -    Memory update request for PowerForecaster FBs
Event     -    Forecast request for PowerForecaster FBs

Figure 5.15: Interface of the FB FORECAST TIMER function block.

An example of the function block’s usage in an application is presented in figure 5.16.
The data links have been left out of the illustration for the sake of conciseness. An
excerpt of the ECC is depicted in figure 5.17. The initialization and de-initialization
algorithms (not depicted) set an internal COUNTER variable to zero. This variable is incre-
mented by the time in minutes since the last request upon every REQ event. Additionally,
the time stamp input data are delegated to the outputs, and a UD output event is issued.
If the counter is smaller than the frequency set by the RS input, the data are cached for
the next request and the FB returns to the Initialized state. Otherwise, the FB is
transferred to the WaitForCnf state, in which it remains until a UDCNF event is received
from the forecaster FBs. Once the event arrives, the counter is reset, an FREQ event is
issued before the data are cached and the function block returns to the Initialized

state.
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Figure 5.16: Usage of the FB FORECAST TIMER function block in an application.
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Figure 5.17: Excerpt of the FB FORECAST TIMER function block’s ECC.

With the CFB FORECASTER composite function block, a wrapper for the PVForecaster,
LoadForecaster the event timing was created. Its interface is depicted in figure 5.18.
The FB takes all of the PVForecaster’s and LoadForecaster’s data inputs along with
a single event input for requesting updates and forecasts. The respective outputs are
combined into a single PDIFF output, which represents Pd,f over the forecast horizon.
The composite network, with all of the internal event and data connections, is presented
in figure 5.19. Unlike events, the data do not need to be synchronized. Thus, splitting
data and sending them to two or more FBs does not require E SPLIT function blocks.
The FB SUB LREAL ARR96 FB takes two arrays of size 96 and subtracts each element of
the array IN2 from the respective element in the array IN1.

5.1.10. Input locking

If two requests follow in too short succession of one another (e.g., in a simulation in
which requests arrive at an accelerated rate), the data sent to the forecaster FBs could
theoretically be de-synchronized. Furthermore, problems could arise when requests
are sent twice with the same time stamp.
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PLD
DOY
TD
TLB
TLF

QO
PDIFF

Input event qualifier    -    BOOL
PV power in W    -    LREAL

Load in W    -    LREAL
Day of the year [1..365]    -    UINT

Time of day [min] [0..1439]    -    UINT
Time frame to look back for PV power forecasts in h    -    LREAL

Forecast horizon in h    -    LREAL

Initialization Request     -    Event
Normal Execution Request     -    Event

Event    -    Initialization Confirm
Event    -    Update Execution Confirmation 
Event    -    Forecast Generation Confirmation

BOOL    -    Output event qualifier
LREAL[96]    -    Power difference forecast in W

Figure 5.18: Interface of the CFB FORECASTER function block.
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Figure 5.19: The CFB FORECASTER function block’s composite network.

To prevent such issues from occurring, a lock mechanism was devised. The PVPROG LOCK

function block that implements the mechanism is depicted in figure 5.20. It takes the
input event L, along with the data required for the PVprog implementation, which it
delegates to its outputs. Any subsequent requests are ignored until a U event unlocks
the FB. In its unlocked state, it lets the next set of data through, as long as the TDI

input has incremented by at least the value set by the DT input. On the right hand side,
there are confirmation events for the L and U input events, respectively. Additionally,
there is a REJ output event that can be used to notify FBs that a request was rejected.
The corresponding RO data output returns true if the FB is currently unlocked and the
rejection was due to insufficient time passing between requests, or false if the FB is
currently locked. An illustration of the function block’s usage is provided in figure 5.21.
The data connections are omitted for brevity.

INIT
L
U

INITO
LO
UO
REJ

PVPROG_LOCK
1.0

QI
PPVI
PLDI
FLI
LLI
DOYI
TDI
DT

QO
PPVO
PLDO

FLO
LLO

DOYO
TDO

RO

Input event qualifier    -    BOOL
PV power in W    -    LREAL

Load in W    -    LREAL
Feed-in limitation in W    -    LREAL

Load limit in W    -    LREAL
Day of the year [1..365]    -    UINT

Time of day [min] [0..1439]    -    UINT
Frequency [min] at which to let data through    -    INT

Initialization Event     -    Event
Lock Event     -    Event

Unlock Event     -    Event

Event    -    Initialization Output Event
Event    -    Lock Confirmation
Event    -    Unlock Confirmation
Event    -    Rejected Request Notification

BOOL    -    Output event qualifier
LREAL    -    PV power in W
LREAL    -    Load in W
LREAL    -    Feed-in limitation in W
LREAL    -    Load limit in W
UINT    -    Day of the year [1..365]
UINT    -    Time of day [min] [0..1439]
BOOL    -    Rejection reason indicator.

Figure 5.20: Interface of the PVPROG LOCK function block.
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PVPROG_LOCK
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L
U

INITO
LO
UO
REJ

PVPROG_LOCK
1.0
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FLI
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DOYI
TDI
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TDO
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CFB_FORECASTER
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INITO
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CFB_FORECASTER
0.0

QI
PPV
PLD
DOY
TD
TLB
TLF

QO
PDIFF

BatteryOptimizer_0
INIT
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SIMIN

INITO
CNF
SIM

BatteryOptimizer
1.0

QI
TLF
PDIFF
FL
LL
CSIM

QO
PBR
ECD1

Figure 5.21: Usage of the PVPROG LOCK function block in an application.

Upon triggering the L input event, the LO output event is forwarded to the REQ input of
the CFB FORECASTER FB, bringing the memory update and forecasting algorithms into
motion. When the CFB FORECASTER has completed its operations - instead of sending
its output event directly to whichever FB is awaiting confirmation - it reroutes the event to
the U input event of the PVPROG LOCK FB, unlocking it for new inputs. The confirmation
event can then be taken from the corresponding UO event output. Figure 5.22 illustrates
the function block’s ECC. The initialization sequence is slightly different than usual, in
that an L event or a de-initialization request is required for it to leave the Init state.
The delegateInputs algorithm, which delegates the input data to the FB’s outputs, is
called from within the LOCKED state. From within the UNLOCKED state, the FB must pass
through the CheckTiming state before it can enter the LOCKED state again. If the time
since the last request is shorter than the set threshold, it returns to the UNLOCKED state.

START

LOCKED delegateInputs LO

UNLOCKED

Init initialize INITO

DeInit deInitialize INITO

CheckTiming calcTimeSinceLastReq

Unlock UO

TimeRejection setROTrue REJ

LockRejection setROFalse REJ
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[TIMESINCELASTREQ >= DT]

1

1

INIT[FALSE = QI]

1

L
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1

INIT[FALSE = QI]

2

[TIMESINCELASTREQ < DT]

2

Figure 5.22: ECC of the PVPROG LOCK function block.
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INIT
PUD
BUD

INITO
PCNF
BCNF

REJ
FB_PVPROG_00

1.0
QI
PPV
PLD
FL
LL
DOY
TD
SOC

QO
PB
RO

Input event qualifier    -    BOOL
PV power    -    LREAL

Load     -    LREAL
Feed-in limitation    -    LREAL

 Load limit     -    LREAL
Day of the year [1..365]    -    UINT

Time of day [min] [0..1439]    -    UINT
State of charge of the battery [0..1]    -    LREAL

Initialization Request     -    Event
Power Update Event     -    Event

Battery Update Event     -    Event

Event    -    Initialization Confirm
Event    -    Power Update Confirmation
Event    -    Battery Update Confirmation
Event    -    Request Rejection Notification

BOOL    -    Output event qualifier
LREAL    -    Set battery charging power
BOOL    -    Rejection reason indicator

Figure 5.23: Interface of the FB PVPROG 00 function block.

5.1.11. PVprog composite function block

To further facilitate the usage of the PVprog function block library, an adapter was
created in the form of a CFB. The interface is depicted in figure 5.23. Apart from
the initialization, it has two separate input events: A power update, PUD and a battery
update, BUD event. As shown in figure 5.24, PUD, used for forecast generation, is passed
through the PVPROG LOCK FB. On the other hand, BUD, used for updating the battery
model’s SoC, goes straight to the SimpleBatteryModel FB.
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Figure 5.24: The FB PVPROG 00 function block’s composite network.
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As a result, the battery’s SoC can be updated at any time. Likewise, the ProgErrCtrl

FB is not bound to the locking mechanism, and can be updated with new PV power
and load measurement at any time. Frequent updates to the SoC, Ppv and Pload are
recommended for a smooth and reliable optimization. A direct use of the FB PVPROG 00

FB is not envisaged. It exists in the library mainly for the purpose of demonstrating
what a PVprog subapplication could look likei, and in order to provide quick access to
the algorithm in 4diac for testing purposes.

5.1.12. Additional PVprog utilities

Due to the nature of its implementation, the PVprog function block library comes with
a few limitations. To deal with these issues, utility FBs as described briefly in this
subsection are provided with the library. Because the forecast generation relies on array
indexing according to fixed time steps, the function blocks take day of the year (DOY)
and time of day (TD) inputs instead of a time stamp. DOY is given as an unsigned
integer between 1 and 366, and TD is an unsigned integer representing the minutes
since 12 AM (a value between 0 and 1439). The IEC 61131-3 time stamp data type used
in IEC 61499 applications is called DATE AND TIME. To enable the use of the PVprog
FB library with this data type, two conversion FBs are provided: DT TO DOY UINT and
DT TO TD UINT. They take a DATE AND TIME time stamp as an input and return the
corresponding DOY and TD, respectively. The composite networks are depicted in
appendix A.
To ensure that the data used for forecasting arrive in fixed intervals, the averaging CFB
F N MIN MEAN LREAL can be used. Its interface is depicted in figure 5.25. As inputs,
it takes data along with a time stamp and the time interval of which to compute the
mean of the arriving values (specified as an IEC 61131-3 TIME data type). A CNF1

event and the average of the input data that have arrived within the current interval is
released every time the time stamp TSI indicates that the time since the end of the
last interval has reached or exceeded the time specified by N. If the time since the last
interval exceeds N, the mean up to N is estimated, and the remaining data are included

iAt the time of writing this thesis, the ability to save subapplications for later use is not yet functional in
4diac.

REQ CNF1
CNF0

F_N_MIN_MEAN_LREAL
1.0

X
TSI
N

Y
TSO

Input data     -    LREAL
Time stamp     -    DATE_AND_TIME

Time interval of mean     -    TIME

Normal Execution Request     -    Event

LREAL     -    N minute mean of X
DATE_AND_TIME     -    Time stamp

Event     -    New average arrived
Event     -    No new average arrived

Figure 5.25: Interface of the F N MIN MEAN LREAL FB.
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in the computation of the subsequent interval’s average. To account for the possibility of
extreme over-times (e.g., due to blackouts), the data are reset to zero if the time since
the end of the last interval exceeds twice the size of the interval set by N. If no new
average has been calculated from the arriving data yet, a CNF0 event is issued. The
function block’s internal network is rather complex and exceeds the scope of this thesis.
Thus, it is depicted in appendix A without any further explanation. A brief mathematical
description is as follows:
A time interval [tb, te] is defined, where tb is the beginning, te is the end of the interval,
tl is the point in time at which the last data sample x has arrived and t is the point in

time of the current data sample’s arrival: tb <= tl < t
!

<= te. The average x of the data
within the interval [tb, t] is determined by multiplying the current data sample with the
fraction of time since the last data sample, normalized to the size of the interval [tb, te],
and by adding it to the average of the interval [tb, tl], which was determined in the last
computation step.

x([tb, t]) ≈ x([tb, tl]) +
t− tl
te − tb

· x(t) (5.1)

If a sample arrives at te, the average is returned along with the time stamp te, and then
reset to 0, resulting in the start of a new interval. If, however, t is greater than te, the
returned average is reduced by the over-time, and returned with the time stamp te.

x([tb, te]) ≈
x([tb, t])

1 + t−te
te−ts

(5.2)

In this case, the data for the next time frame’s average are not initialized to 0, but instead
determined as

x([tb, t]) ≈ x([tb, tl])− x([tb, te]) (5.3)

5.2. PV curtailment function block library

As mentioned in the previous sections, the PV forecasting algorithms rely on historical
PV power measurements for generating their predictions. Theoretically, this should be
the power before curtailment. In practise, however, curtailment occurs by regulating the
voltage of the PV field, and moving a tracker out of its maximum power point (MPP),
which results in the measured output being the derated PV power. Consequently, the
PV power predictions may at times underestimate the potential output if curtailment
occurs. To solve this issue, it makes sense to include the PV power curtailment in
the control applications, and to use the output for estimation of the uncurtailed PV
power. The function block library that was developed for this purpose is described in
the following subsections.
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REQ CNF

PVDERATOR_PROP
0.0

ACT
SET
KP

DFActual PV (feed-in) power in kW/kWp     -    LREAL
Set PV (feed-in) power in kW/kWp     -    LREAL

Proportional control coefficient     -    LREAL

Normal Execution Request     -    Event

LREAL     -    Derating factor

Event     -    Execution Confirmation

Figure 5.26: Interface of the PVDERATOR PROP function block.

5.2.1. PV curtailment with regard to the current value

The simplest method for curtailment of PV power is by controlling with regard to the
current value of Pgf. Due to the highly fluctuating nature a grid feed-in profile can
have, a quick reaction capability of the controller is desirable. This is best achieved by
implementing a proportional (P) controller, which compares the measured value to a
set value, and adjusts the output u(t) according to a proportional coefficient Kp to the
control error e(t).

u(t) = Kp · e(t) (5.4)

The interface of the PVDERATOR PROP CFB, which wraps a P controller for PV power
curtailment, is depicted in figure 5.26. As data inputs, it takes the measured and set
values, which could either be the PV power or the grid feed-in power, both normalized
to PSTC, respectively. The control output is converted into a derating factor df , a value
between 0 and 1 that can be used to specify how strongly the PV power output should
be reduced. A df of 1 indicates no curtailment, and a df of 0 specifies zero output. If
supported, a PV inverter or MPP tracker could use this value directly for curtailment.
Devices that take the absolute power as the set value for power limitation would require
a multiplication of df with the measured PV power. As shown in the CFB’s composite
network (see figure 5.27), the P controller’s output is added to df in a recursive loop.
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Figure 5.27: Composite network of the PVDERATOR PROP function block.
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The output itself is limited to 0 and 1. Generally, the PV power or grid feed-in will
not jump from 0 to above the set value first thing in the morning. To ensure that no
curtailment occurs at the beginning of the day, df is reset to 1 as soon as an ACT input
equal to 0 arrives.

5.2.2. PV curtailment with regard to the running average

In some cases, curtailment with regard to the momentary value may not be necessary.
For example, in Germany the 10 min running average of Pgf can be used as a reference
value for the controller [16]. Doing so may provide the benefit of slightly lessened
curtailment losses. Compared to a momentary feed-in profile, the fluctuations of
an averaged feed-in profile are significantly reduced, as can be seen in figure 5.28.
This changes the criteria from quick reactions to smoother adjustments of the output,
for which a proportional-integral-derivative (PID) controller is well-suited. With a PID
controller, the output is adjusted according to a proportional, integral and derivative
weighted sum, where each term is weighted with a coefficient: Kp for the proportional
term, Ki for the integral term and Kd for the derivative term.

u(t) = Kp · e(t) +Ki ·
∫ t

t0

e(τ)dτ +Kp ·
∂e(t)

∂t
(5.5)

Usually, the integral is computed over all errors since the initialization of the controller.
This makes little sense for an intermittent grid feed-in profile; so in this case, the integral
time frame is limited. For realization of a PID curtailment control with regard to the n min
running average, the PVDERATOR NMIN MEAN CFB was created as part of the library.
Its interface, which differs slightly from that of the PVDERATOR PROP function block, is

Figure 5.28: Comparison of a 1 s resolved grid feed-in profile without curtailment with the
10 min running average of the same profile on an exemplary day.
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REQ CNF

PVDERATOR_NMIN_MEAN
0.0

PPV
PLD
PBAT
TS
N
FLSET
PSTC
KP
KI
KD

DFPV power in W     -    LREAL
Load in W     -    LREAL

Battery power (+charge, -discharge) in W     -    LREAL
Time stamp     -    DATE_AND_TIME

Time interval of running mean in min     -    UINT
Set limit to N min mean of grid feed-in in kW/kWp     -    LREAL

Nominal PV capacity in kWp     -    LREAL
PID proportional coefficient     -    LREAL

PID integral coefficient     -    LREAL
PID differential coefficient     -    LREAL

Normal Execution Request - Event

LREAL     -    Derating factor

Event     -    Execution Confirmation

Figure 5.29: Interface of the PVDERATOR NMIN MEAN function block.

illustrated in figure 5.29. As inputs, it takes the PV power, load and battery power, a time
stamp that is required for averaging, the interval n, the desired specific limit of the n min
average grid feed-in, the nominal PV capacity and the three PID coefficients. Unlike
its proportional counterpart, the PVDERATOR NMIN MEAN function block takes absolute
values, with the exception of the feed-in limit, which is normalized to PSTC. The output
DF can be used in the same manner as that of the PVDERATOR PROP CFB. Figure 5.30
provides an illustration of the function block’s composite network. First, the grid feed-in
power is computed as

Pgf = max(0, Ppv − Pld − Pbat) (5.6)

by the FB PVFEEDIN CALC CFB, and then normalized to PSTC. An F N MIN RUNMEAN

function block (detailed in appendix A) estimates the n min running average and passes
it to a PID controller, with the integral time frame (limited to n min) as the actuator value.
The F N MIN RUNMEAN CFB utilizes an N MIN MEAN LREAL CFB (see section 5.1.12),
which issues an updated value in fixed-width time intervals.
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Figure 5.30: Composite network of the PVDERATOR NMIN MEAN function block.
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As a result, equation 5.5 can be simplified to

u(t) = Kp · e(t) +Ki ·
t∑

i=t−n

e(τi) +Kp · (e(t)− e(t− 1)) (5.7)

where τi is the point in time at which an updated one minute average of Pgf is issued
by the N MIN MEAN LREAL function block. The PID controller compares the set limit to
the running mean, and its output is added to it, resulting in a dynamic feed-in limit
with respect to the momentary value. After limiting the intermediate result to [0, 1], it
is delegated to a PVDERATOR PROP function block, which generates the df output as
discussed in section 5.2.1.

5.3. SG Ready heat pump controller function block

With over 1,000 heat pumps certified with the “SG Readyi” label [17], the specified
control interface has been established as a standard in Germany. The standard dictates
that heat pumps carrying the label must make it possible to influence their operation
using two switch contacts. Each contact can have the state “on” (1) or “off” (0). This
results in four operation modes, which are listed and described in table 5.1.
Unfortunately, there is currently no fixed definition for the SG Ready modes 3 and 4.
From a user’s perspective, it would be desirable to have clearly defined factory settings
for the control modes, i.e. fixed set points for the storage tank temperature thresholds
or increases thereof in addition to clarifications on whether or not cartridge heaters are
used. As part of this thesis, a function block that can be used to control SG Ready heat
pumps in a PV system was implemented. It is based on a simple control algorithm by
Tjaden et. al, which aims to increase the self supply [19].

iSG stands for “smart grid”.

Table 5.1: The four states of SG Ready heat pumps. Source: [18]

# Contact states Short description Long description

1 1 : 0 Off The heat pump is turned off for a maximum
of 2 hours.

2 0 : 0 Normal The heat pump runs in normal operation
(determined by an internal controller).

3 0 : 1 Amplified I A recommendation for the heat pump to
turn on. Whether the heat pump actually
is turned on or not, is determined by an
internal controller.

4 1 : 1 Amplified II A definitive instruction to turn the heat pump
on as long as the internal controller deems
it possible.
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REQ CNF

HeatPumpController
1.0

PPV
PLD
PBAT
TS
PHP
F

SG1
SG2

PV power in W     -    LREAL
Load in W     -    LREAL

Battery charging power in W     -    LREAL
Time stamp     -    DATE_AND_TIME

Heat pump's nominal electrical power in kW     -    LREAL
On/Off threshold [0.1,..,1]     -    LREAL

Normal Execution Request     -    Event

BOOL     -    SG Ready output 1
BOOL     -    SG Ready output 2

Event     -    Execution Confirmation

Figure 5.31: Interface of the HeatPumpController function block.

This is done by shifting the times in which the heat pump is powered on to times of
excess PV power. The function block sets the SG Ready modes 2 and 3, depending on
the conditions in equation 5.8.

SG Ready mode =
{

3, Pgf≥fon/off·PHP,nom

2, PPV≤fon/off·Pload
(5.8)

The factor fon/off is a threshold for when to switch. It should be set to a value between
1 % and 150 %, depending on the ratio of the installed PV capacity and the heat pump’s
nominal power PHP,nom [19]. The function block’s interface is depicted in figure 5.31. It
takes the inputs required to compute the conditions for switching, whereby they initialize
to 0 if not set by the user. So the PBAT input can be ignored if the system does not have
a battery. For increased stability, each of the three power inputs is passed through an
F N MIN MEAN LREAL function block, which outputs the 1 min average of the respective
value every minute (see figure 5.32). On that account, a time stamp input is necessary.
The CFB outputs two boolean signals representing the SG Ready switches. They can
be passed directly to an analogue output of a PLC.
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Figure 5.32: Composite network of the HeatPumpController function block.
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6. Connection of IEC 61499 applications with Matlab®

Since 4diac is a relatively young application, its function block and application test-
ing/debugging frameworks are still rather limited. To overcome these limitations and
to improve the capability of validating 4diac applications through simulation, a commu-
nication library was developed in Matlab®, which allows the connection of IEC 61499
control applications with Matlab® simulation models. The library implements the TCP/IP
(client/server) communication protocol (see section 3.4.2), and was made available as
open sourcei. It should work with any IEC 61499 application, but has only been tested
with applications running on FORTE. This section first briefly introduces three testing
tools that are currently available with 4diac, and discusses their limitations. Then, the
functionality and use of the tcpip4diac Matlab® communication library are described.
Finally, 4diac/Matlab® co-simulations are performed to validate the IEC 61499 function
block libraries and applications developed within the scope of this thesis.

6.1. 4diac testing tools

At the time of writing this thesis, 4diac comes with three validation tools:

• FBTester : For testing FBs in 4diac.

• Live monitoring: For monitoring running applications (i.e. “watching” inputs and
outputs of FBs).

• Boost Test : A C++ unit testing library intended for testing the internals of FORTE.

6.1.1. FBTester

The FBTester is part of 4diac’s function block development IDE, and is designed for
the validation of individual FBs. To use it, an FB is deployed to FORTE and the input
data must be entered manually. Events are triggered by clicking a button next to the
respective input. This is illustrated in figure 6.1 for the BatteryOptimizer FB. When
an event is triggered, the resulting output values are displayed next to the data outputs,
and the number of output events issued is displayed next to the respective event outputs.
On its own, the FBTester is limited by the fact that it can only be used to debug the
external behaviour of function blocks, but not the internal implementation. For the
internal implementation, it is currently necessary to launch FORTE in debug mode
using a C++ IDE and place breakpoints within the underlying C++ source files of the
FB under question. Additionally, the FBTester implements a very basic unit testing
framework which allows one to run multiple tests in a sequence. Due to the fact that
the tester is still in a prototype stage, however, these test sequences currently cannot

iAvailable for download at: https://github.com/MrcJkb/tcpip4diac
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INIT
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1.0

QI
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--
--
--

--
--

--
--
--

Figure 6.1: Example of a function block being tested using the FBTester in 4diac.

be saved. Also, the FBTester currently comes with the limitation that test cases often
fail to initialize properly if a data input or output is an array that exceeds a certain size
(as is the case in figure 6.1). It is also not possible to test adapter inputs and outputs
such as the BatteryModelPlg output in figure 6.1. A partial workaround for this bug is
to create a CFB that omits the affected inputs/outputs as a wrapper for the FB that is to
be tested. Array outputs can then be analysed in the C++ source code. According to
the 4diac contributors, a major rework of function block unit testing is envisaged for the
future. In conclusion, the FBTester in combination with a C++ IDE is a very useful tool
for the development process of BFBs. However, this requires programming experience
that cannot be expected from an average user. On its own, the FBTester suffices only
for very simple function blocks.

6.1.2. Live Monitoring

For testing IEC 61499 applications, 4diac offers a live monitoring feature. Here, com-
plete applications are deployed to FORTE. Event and data inputs/outputs of the FBs
can be “watched” as the application runs. With the monitoring feature, it is also possible
to monitor the internals of subapplications and CFBs. At its current stage, it is further
developed than the FBTester, and allows the partial monitoring of array inputs and
outputs. To analyse the processes, one can “force” data input values and trigger event
inputs. An example is depicted in figure 6.2, where its IN data input of the F LIMIT

FB was forced to a value of 5, and its REQ event input was triggered manually. The
monitoring feature is a powerful tool for the development of applications and CFBs. In
its current incarnationi, it lacks the ability to set breakpoints; but this is planned for a
future release. There is no built-in way to store and visualize data in graphs, but it is
possible to use a CSV WRITER FB to export the data and visualize them in an external
application. The main drawback of the monitoring feature is the fact that debugging by
manually triggering events can be an extremely tedious and time consuming process
for complicated control applications. In the case of the PVprog algorithm, for example,
simulating a single day of PV power with 1 min resolved data would require 1,440 manual

i4diac version 1.8.4
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Figure 6.2: Excerpt of a running IEC 61499 application being monitored in 4diac.

mouse clicks and data inputs for the PV power, load and battery SoC, respectively; and
another 1,440 clicks for triggering events. With 10 days required to fully initialize the
PVForecaster function block’s cache, this would make a validation nearly impossible.
A better solution would be to program a specialized CSV reader FB based on the
CSV WRITERi in C++. Since the CSV format is not standardised, however, a reader that
works for one file may not work for another.

6.1.3. Boost Test

Boost Test is an open source C++ unit testing library that is used within the development
of FORTE [11]. To enable it, one must download the Boost Test library from an external
source, and include it in the FORTE project. Thus, a C++ IDE is required. While it
requires knowledge in the C++ programming language, it is also the fastest testing
framework, and has the potential to be the most powerful of all. Like the FBTester, one
can test single function blocks. Technically, it is possible to set up complex simulations
that make use of the function blocks and combine them to applications. As the term
implies, however, unit tests are meant for testing isolated units of code, not for running
entire simulations [20]. A common use of unit tests is to test already validated software
units whenever source code changes are made to ensure their functionality is not
impaired. To conclude, the Boost Test library should be used for smaller tests, and is
unsuitable for validation of the FB libraries developed with this thesis.

6.2. 4diac/Matlab® TCP/IP communication library

For Ethernet communication using the TCP/IP protocol, Matlab® provides three classes:
tcpclient, tcpserver and tcpip. The latter can act as both a client and a server.
They communicate by sending and receiving either binary “byte”ii or ASCII (“American

iThe source file is called “GEN CSV WRITER.cpp”, and can be found in the /src/modules/utils directory
of FORTE.

iiOn the machine level, data are represented with bytes, where 1 byte can hold a number between 0
and 255.

51



Connection of IEC 61499 applications with Matlab®

Table 6.1: Selection of IEC 61499 data types, their byte representations and their equivalent
Matlab® data types.

IEC 61499 typeID Number of bytes Matlab® equivalent

BOOL (1) 64 0 logical

BOOL (0) 65 0 logical

SINT 66 1 int8

INT 67 2 int16

DINT 68 4 int32

LINT 69 8 int64

USINT 70 1 uint8

UINT 71 2 uint16

UDINT 72 4 uint32

ULINT 73 8 uint64

REAL 74 4 single

LREAL 75 8 double

STRING 80 varies char

WSTRING 85 varies -
DATE AND TIME 79 8 -

Standard Code for Information Interchange”) data. For communication between two
Matlab® instances, the data do not have to be converted to a byte or ASCII represent-
ation. It does, however, for communication between Matlab® and an external socket.
Unfortunately, neither of the Matlab® classes provided can be used directly for com-
munication with 4diac SERVER or CLIENT function blocks running on FORTE. This is
due to the fact that the byte-representations of the various data types differ between
the two programs. Additionally, some IEC 61499 data types (e.g., DATE AND TIME and
WSTRING) do not have direct Matlab® equivalents.

6.2.1. Data type representations

The main difference between the data types’ representations is that FORTE adds an
additional byte as an indicator for the data type (referred to in this thesis as a typeID),
while Matlab’s casting function, typecast() does not. Instead, typecast() castsi

the data type to an 8 bit unsigned integer vector in which each element represents a
byte (herein referred to as “raw byte data”). No typeID is needed, because the byte
vector can be cast back into any data type with one of Matlab’s casting functions (e.g.,
double() or uint32()). In some cases, FORTE not only adds a typeID, but also
additional bytes that indicate the length of a string or the size of an array. In the following
sections, the bytes that hold the typeID and additional information shall be referred to
as a “byte header”. Table 6.1 provides an overview of some of the IEC 61499 data types,
their byte representations and their Matlab® equivalents. The DATE AND TIME data type

iAmong other possible uses.
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is represented as the number of milliseconds since January 1st, 1970 at 01:00:00 (loosely
based on the UNIX time stamp format). The least significant byte (LSB)i is incremented
first, and the most significant byte (MSB) last. The WSTRING data type represents
wide character arrays (wchar), which currently do not exist in Matlab®. Each of the
IEC 61499 data types can also exist in the form of an array. In FORTE, arrays’ byte-data
have a special header with a typeID of 118 followed by two bytes that represent the
number of elements the arrays hold. This limits the sendable array size to 512 elements.
The fourth header byte holds the typeID of the IEC 61499 data type the array holds.
Appending the header are sequences of raw byte data (without additional headers) for
each element of the array.
Connections between Matlab® and FORTE are possible using the three aforementioned
classes, but it is a tedious process. To send data from Matlab® to FORTE, the Matlab®

data first have to be cast into a byte vector, and then the correct byte header must
be added so that the FORTE socket function block can interpret the arriving data
correctly. To receive data from FORTE in Matlab®, the byte header must be interpreted,
removed from the received vector and optionally cast to the corresponding data type.
To automate the casting between Matlab® and IEC 61499 data types, the tcpip4diac

class, which subclasses tcpip, was created. It is capable of “translating” the IEC 61499
data types listed in table 6.1 to their Matlab® equivalents and vice versa. Additionally,
Nx6 double matrices in the datevec format and DATE AND TIME data can be converted
to each other.

6.2.2. Use of the tcpip4diac class

The following subsection provides a brief introduction into the use of the tcpip4diac

class. It is designed in accordance with the IEC 61499 compliance profile for feasibility
demonstrations [8]. Thus, the interface is similar to that of a 4diac SERVER or CLIENT
function block. The syntax to construct a tcpip4diac object in Matlab® is one of the
following:

t = tcpip4diac(networkRole);

t = tcpip4diac(networkRole, remotehost);

t = tcpip4diac(networkRole, remotehost, port);

t = tcpip4diac(.., 'OptionName', OptionValue);

The first input argument, networkRole must either be 'server' or 'client', and
the destination is specified with remotehost ('localhost' by default for clients, and
'0.0.0.0' by default for servers) and port (61500 by default). Additional paramet-
ers can be set using Matlab’s 'Option'/Value syntax. The syntax without additional
options constructs a TCP/IP object that is capable of communicating with SERVER 1

iLSB and MSB can also stand for “least significant bit” and “most significant bit”, respectively.
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or CLIENT 1 CSIFBs, respectively. To communicate with CSIFBs that have more or
less than one data input or output, the 'DataInputs' and 'DataOutputs' options are
used, as shown in the following examples. The dataInputs represent data sent to and
the dataOutputs assume the role of data received from the socket on FORTE. As per
definition in IEC 61499, the amount of the tcpip4diac object’s inputs must be equal to
the number of outputs of the corresponding CSIFB on FORTE, and vice versa for the
amount of the tcpip4diac object’s outputs. All of the IEC 61499 data types listed in
table 6.1 are supported. Though possible, it is not recommended to use the WSTRING

data type, which is cast to a string classi in Matlab®, and has no true equivalent.

To construct a server with two inputs and one output, the following syntax is used:

% Specify the IEC 61499 data input types that are expected in a cell

% array.

dataInputs = {'UINT'; 'LREAL'};
% Call the tcpip4diac constructor

t = tcpip4diac('server', '0.0.0.0', 61500, 'DataInputs', dataInputs);

Following is an exemplary construction of a server with three outputs and one input:

dataOutputs = {'UINT'; 'LREAL'; 'LREAL'};
dataInputs = {'UINT'; 'LREAL'};
t = tcpip4diac('server', '0.0.0.0', 61500, 'DataInputs', dataInputs, ...

'DataOutputs', dataOutputs);

An empty cell array represents no inputs/outputs.

t = tcpip4diac('server', '0.0.0.0', 61500, 'DataInputs', {});

Figure 6.3 summarizes the tcpip4diac class’s essential functionality in a Unified Mod-
eling Language (UML) class diagram. In addition, it depicts two 4diac CLIENT and
SERVER function blocks with colour coded arrows illustrating event - method correspond-
ence. An arrow on the left hand side of an event or method symbolizes it being triggered
by an external source (i.e. another function block or line of code). Arrows on the right
hand side of an event indicate that it can be triggered by the corresponding methods.
In the case of the Matlab® sockets, methods cannot be triggered by events, because
tcpip is not a handle class, and as such cannot implement so-called Observer (or
listener) behaviour. However, as a workaround, some methods do not return either
until a time-out period is exceeded or until the arrival of a request or response from the
connected socket. This is indicated by an arrow to the right hand side of the method.
Here, another drawback of the tcpip class comes to light.

iRequires Matlab® version R2016b or higher.
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Figure 6.3: UML class diagram of the tcpip4diac class and the correspondence of its meth-
ods with the events of 4diac CLIENT and SERVER FBs.

The fread() and fscanf() methods for reading data do not implement this behaviour.
For them to return a client request or server response, the data must have been sent
already. If the object’s time-out is exceeded, an empty double vector is returned. It is
possible to increase the time-out, but unless the exact number of bytes being received
is known beforehandi, the method will not return until the time-out is exceeded. The
tcpip4diac’s req(), waitForData() and awaitResponse() methods fix this issue by
periodically checking the number of received bytes and returning when it stops increas-
ing and has exceeded the minimum expected number of bytes. Through inheritance,
all of the non-private tcpip methods (fread(), fwrite(), etc.) can be performed on
a tcpip4diac object. However, it is recommended to use the tcpip4diac methods
instead, wherever possible. To initialize or de-initialize a connection, the following syntax
can be used, where qi is true for initialization, and false for de-initialization:

init(t, qi) % Omit output arguments

qo = init(t, qi); % Output event qualifier (logical)

[qo, status] = init(t, qi); % Outputs a status message

[qo, status, t] = init(t, qi, remotehost, port); % Change the remote

% host and port

In the 'server' role, a connection is established once the CLIENT function block on
FORTE is initialized. With the tcpip4diac object’s IP set to the default '0.0.0.0',

iThis is often not the case for STRINGs.
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the FORTE CLIENT FB’s ID must be configured to the PC’s local IP address and the
tcpip4diac server’s port. The PC’s local IP address can be queried usingi

ip = tcpip4diac.getLocalHostIP

To connect to a SERVER FB on FORTE, it must be initialized before the tcpip4diac

client. In this case, the IP on both sockets can be set to the string 'localhost'.
In the 'client' role, the req() method is used to send requests to a SERVER FB. This
method does not return until a response is received. An error message is issued if it is
called on an object in the 'server' role. For multiple data inputs, the inputs in1, ...

.., inN (where N is the number of inputs) are automatically cast to the corresponding
IEC 61499 data types (see table 6.1) before being sent to the connected function block.
The returned output data types out1, .., outM (where M is the number of outputs)
depend on the corresponding IEC 61499 FB’s input data types. If the tcpip4diac

object only has one input, it must be cast to the corresponding Matlab® data type in
table 6.1 before being passed to the req() function. To send data to FORTE in the
form of an array, the data must be passed as a Nx1 vector.

The syntax for sending a single data input in a request is as follows:

[out1, .., outM] = req(t, in);

Whereby the Matlab® data type of in must correspond with the data type expected by
the FORTE application (e.g., a single if a REAL is expected, see table 6.1). Multiple
data inputs can be wrapped in a cell-array.

inData = {in1, .., inN}; % Cell-array of inputs

[out1, out2, out3, .., outM] = req(t, inData);

If data are sent in Matlab’s datevec format, the output received by the FORTE SERVER

will be of the DATE AND TIME type.

in = datevec(now);

[out1, .., outM] = req(t, in);

In both the 'client'ii and 'server' role, the waitForData() function can be used
to await data from a FORTE socket. It will not return until either a REQ or RSP event is
received or a time-out is reached. The default time-out is inf if none other is specified.
The data types of the outputs out1, .., outM correspond with those of the CSIFB

iRequires JAVA™.
iiWith the req() method, this function is obsolete for client objects.
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inputs SD1, .., SDN (see table 6.1).

[out1, .., outN] = waitForData(t);

[out1, .., outN] = waitForData(t, timeoutS);

In waitForData, an error message is issued if the number of function outputs is not
equal to the number of data outputs specified in the constructor. To wait for a response
(or request), and ignore the received data, the awaitResponse() method can be used.

awaitResponse(t) % Does not return until a REQ or RSP event is received

A response is sent using the rsp() method. The syntax for a single data input, which
must be cast to the correct data type beforehand, is as follows:

rsp(t, in)

Multiple inputs are wrapped in a cell-array.

inData = {in1, .., inN}; % cell array of inputs

rsp(t, inData)

Sometimes it may be necessary to send data from Matlab®, and perform further
computations before a response arrives (e.g., send more data to another socket on
FORTE using a second tcpip4diac socket). For this purpose, the reqNorsp() method
was added. This method returns regardless of whether a response is received or not.
To await a response in this case, the waitForData() or awaitResponse() methods must
be called manually. An example of its intended use is as follows:

reqNorsp(t, inData); % send data.

% Perform intermediate operations, e.g.,

rew(t2, inData2); % send data to different socket

[out1, ..,outN] = waitForData(t);

% Alternatively: awaitResponse(t);

An exemplary communication sequence between a tcpip4diac client and a SERVER 1

function block on FORTE is illustrated in figure 6.4. In the UML representations of
the tcpip4diac object, only the relevant properties and methods for the respective
operations are shown along with their values. Method outputs are grouped with the
class’s properties. The correspondences of events and methods are depicted with
colour coded arrows, as is done in figure 6.3. Inputs and outputs of the SERVER 1

function block are visualized with 4diac’s live monitoring feature (see section 6.1.2).
First, a connection is initialized between the two sockets.
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tcpip4diac

NetworkRole = 'client 

RemoteHost = 'localhost 
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________________________

- init(t, true)
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________________________
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inputData = {'LREAL'}

______________________

- out = req(t, 5);
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______________________

- out = req(t, 5);

[75; 64; 20; 0; 0; 0; 0; 0; 0]

tcpip4diac

outputData = {'LREAL'}

out = 10

________________________

- out = req(t, 5);

tcpip4diac

outputData = {'LREAL'}

out = 10

________________________

- out = req(t, 5);

[75; 64; 36; 0; 0; 0; 0; 0; 0]

Figure 6.4: Visualization of a communication process between a tcpip4diac client in Matlab®

and a SERVER 1 FB on FORTE.

The tcpip4diac object connects to the already initialized SERVER 1 FB. Next, the
req() method is called in Matlab®, with a double variable of the value 5 passed to it.
The tcpip4diac instance converts the variable to an appropriate array and appends it
to the LREAL typiID, 75. This triggers the IND event on the SERVER 1 FB and outputs
an LREAL value of 5. In 4diac, the CSIFB’s output is passed to another FB for further
use. This was excluded from figure 6.4 for brevity. In the final step, the FB’s SD 1 input
is “forced” to a value of 10, and a RSP event is triggered using 4diac’s live monitoring
feature. The binary data are sent to Matlab® and cast to a double, allowing the req()

method that was called in the second step to return.
The same communication sequence with reversed roles is depicted in figure 6.5. This
time, the tcpip4diac server is initialized first. The initialization of the CLIENT 1 function
block establishes a connection and allows the init() method to return. This in turn
allows the waitForData() function to be called. Using the 4diac live monitoring, a REQ

event is triggered along with an LREAL value of 5 for the SD 1 data input. The binary
data are sent to the tcpip4diac instance, whose waitForData() method returns it as
a double. After processing the received data, Matlab® passes the response (a double

with a value of 10 in this example) to the tcpip4diac object via its rsp() method.
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tcpip4diac

NetworkRole = 'server 

RemoteHost =          

RemotePort = 61500

outputData = {'LREAL'}

________________________

- init(t, true)

- out = waitForData(t);

tcpip4diac

NetworkRole = 'server 

RemoteHost =          

RemotePort = 61500

outputData = {'LREAL'}

________________________

- init(t, true)

- out = waitForData(t);

tcpip4diac

out = 5

___________________________

- out = waitForData(t);

tcpip4diac

out = 5

___________________________

- out = waitForData(t);

[75; 64; 20; 0; 0; 0; 0; 0; 0]

tcpip4diac

inputData = {'LREAL'}

________________________

- rsp(t, 10)

tcpip4diac

inputData = {'LREAL'}

________________________

- rsp(t, 10)

[75; 64; 36; 0; 0; 0; 0; 0; 0]

Figure 6.5: Visualization of a communication process between a tcpip4diac server in
Matlab® and a CLIENT 1 FB on FORTE.

After converting it to the equivalent FORTE binary format, the object sends the LREAL

variable to the CLIENT 1 FB and triggers a CNF output event.
As demonstrated with figures 6.4 and 6.5, the tcpip4diac class is very flexible. In most
co-simulation cases, it makes more sense to use the former connection scenario. It is
slightly more event driven, and thus more flexible. Nevertheless, the latter scenario can
also be the better choice in some cases. It is also possible to combine both scenarios in
one co-simulation, as is shown in section 6.3. In the following graphical representations
of the validation co-simulations, only the 4diac side of the communication is shown.
With the information provided in this section, the Matlab® side can be deducedi.

6.3. 4diac/Matlab® co-simulations

For a validation of the function block libraries discussed in sections 5.1 and 5.2,
4diac/Matlab® co-simulations were set up and run using the tcpip4diac commu-
nication library. They are described in the following subsections.

iThe Matlab® co-simulation source code is also included in the “PVTControllerLib” function block library.
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Figure 6.6: Set-up of the SERVER SIFB that receives the PV power and the feed-in limit from
Matlab® in the PVprog co-simulation.

6.3.1. IEC 61499 PVprog co-simulation with Matlab®

On the Matlab® side of the co-simulation, the original Matlab® implementation’s source
codei [1] was used as a basis. A function, pvprog4diac0, and a corresponding script,
run pvprog4diac0, were created, which share almost the exact same syntax and
use precisely the same data as their original counterparts. The difference is that the
forecasting and optimization functions are replaced with tcpip4diac sockets that com-
municate with an IEC 61499 application composed of the PVprog function block library.
A total of four tcpip4diac objects are instantiated: A client that sends the PV data,
one for the load, another for the time stamp and a server that accepts the battery’s set
charging power and sends the updated SoC to the battery model function block. An
excerpt of the 4diac application showing the configuration used to receive the PV power
from Matlab® is depicted in figure 6.6. To enable the simulation of different feed-in limits,
the PV GENERATOR FB has a second output for the absolute feed-in limit in W. Because
the only information required by the tcpip4diac object in Matlab® concerns the suc-
cess of data transmission, the IND output event of the PV GENERATOR FB is re-routed
directly to its RSP input. The exact same set-up is used for communicating the load and
grid supply limit, with LOAD METER SERVER function block’s ID set to localhost:61501.
For receipt of the time stamps, a similar configuration as shown in figure 6.7 is im-
plemented. A double vector in the datevec format is received as a DATE AND TIME

output, which is converted into a DOY and a TD for the PVprog sequence. (see sec-
tion 5.1.12). Using SERVER function blocks in 4diac, the communication links for the PV

iAvailable for download as open source at https://pvspeicher.htw-berlin.de/

veroeffentlichungen/daten/pvprog/
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Figure 6.7: Set-up of the SERVER SIFB that receives the time stamp from Matlab® in the PVprog
co-simulation.

generator, the load and the time stamp implement the sequence illustrated in figure 6.4.
An excerpt of the application that illustrates the communication between the battery
and the PVprog subapplication is depicted in figure 6.8. Only the event and data
connections that are relevant to the communication with the battery are shown. An
excluded connection is signified with an arrow head pointing into the input or out of
the output, respectively. The internal network of the PVprog SubApp subapplication
is very similar to that of the FB PVPROG 00 CFB introduced in section 5.1.11 and shall
not be elaborated any further (Refer to section 3.2 for details on subapplications). A
CLIENT 1 FB represents the battery, thus implementing the communication sequence
illustrated in figure 6.5. This is done in order to combine the independent tasks of
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Figure 6.8: Set-up of the CLIENT SIFB that communicates the battery data between Matlab®

and the PVprog subapplication in 4diac within the PVprog co-simulation.
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Figure 6.9: PVprog application in 4diac used in a co-simulation with Matlab®.

charge optimization and battery model updating into a single CSIFB. Whenever the
ProgErrCtrl 0.REQ event is triggered, the error control algorithm kicks in, issuing
an updated set power to the battery in the form of a request. In the Matlab® model,
the tcpip4diac server receives the data and passes them on to a battery simulation,
which in turn passes its new SoC back to the server socket. This causes an update of
the battery model on FORTE. The complete 4diac application is presented in figure 6.9.
Each of the communication set-ups illustrated in figures 6.6 to 6.8 is grouped within a
subapplication. An additional EventManager SubApp performs rendezvous operations
to combine several events arriving from the SERVER CSIFBs into two input events for
the PVprog optimization and error control, respectively. The power flows resulting from

Figure 6.10: Results of a PVprog 4diac/Matlab® co-simulation: Power flows on a sunny day
(left) and average daily power flows of the year (right). Nominal PV power: 5 kWp,
usable battery capacity: 5 kWh, annual electricity consumption: 5,000 kWh.
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Table 6.2: Comparison of the simulation results between the original Matlab® version [1], the
IEC 61499 implementation of the PVprog algorithm and an IEC 61499 implementation
with combined PV and load peak shaving co-simulated with Matlab®.

Unit Matlab® IEC 61499 Difference

Degree of self-sufficiency % 52.6 52.7 0.1
Curtailment losses % 0.9 1.4 0.5
PV generation kWh 5,020.4 5,020.4 0
Electricity consumption kWh 5,010.1 5,010.1 0
Direct use kWh 1,497.6 1,497.6 0
Battery charge kWh 1,353.3 1,363.9 10.6
Battery discharge kWh 1,136 1,144.9 8.9
Grid feed-in kWh 2,123.4 2,090.8 −32.6
Grid supply kWh 2,376.5 2,367.6 −8.9
Curtailment kWh 46.1 68 21.9

the co-simulation are depicted in figure 6.10. They coincide very well with those of the
original Matlab® implementation (see figure 4.1 (right) for a comparison with the sunny
day in figure 6.10, left). A more detailed comparison of the simulation results is listed in
table 6.2. The discrepancies can be regarded as minor. They are attributable to the fact
that the IEC 61499 implementation of the battery optimization iterates through slightly
more feed-in limitations as a result of the slightly different optimization approach (see
section 4.5). Thus, it can also be assumed that the differences are purely statistical.
Figure 6.11 depicts power flows of a co-simulated evening using forecast-based load
peak shaving. The grid supply limit was set to 500 W. To ensure that a full charge is

Figure 6.11: Results of a PVprog 4diac/Matlab® co-simulation: Forecast-based load peak
shaving. Nominal PV power: 5 kWp, usable battery capacity: 2.4 kWh, annual
electricity consumption: 5,000 kWh.
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not enough to completely cover the demand at night, the usable battery capacity was
reduced to 2.4 kWh. Instead of being emptied immediately, the discharge is spread
across the whole evening to ensure that the load peaks purchased from the grid are
reduced throughout the entire evening. In this simulation, the dynamic grid supply limit
is usually about half of the set value of 500 W. The large load peak shortly after 7 PM
temporarily increases it, thus preventing battery discharge entirely. Nevertheless, the
high limit is corrected quickly enough to prevent the next load peak that would have
exceeded the set limit. The fact that the large load peak exceeds the set limit of 500 W
is due to inverter constraints. For a household, such as the one simulated in this thesis,
a limitation of the load is unnecessary. However, the operational strategy could be of
good use in an industrial application, in which penalties may be incurred for load peaks.

6.3.2. IEC 61499 PV curtailment co-simulation with Matlab®

The 4diac/Matlab® co-simulation of the power curtailment control was performed using
1 s resolved PV power and load data [21]. A 4diac application for the simulation
of a proportional controller (henceforth referred to as “Controller A”) is illustrated in
figure 6.12. In Matlab®, a tcpip4diac client communicates the PV power and load to
a SERVER function block on FORTE. For this simulation, a time stamp is not required,
but the data should have a resolution of at least 1 s for adequate results.

LREAL2LREAL_3_0_0
REQ CNF
LREAL2LREAL

1.0
IN OUT

LREAL2LREAL_3_2
REQ CNF
LREAL2LREAL

1.0
IN OUT

FB_PVFEEDIN_CALC
REQ CNF
FB_PVFEEDIN_CALC

0.0
PPV
PLD
PBAT

PGF

F_DIV
REQ CNF

F_DIV
1.0

IN1
IN2

OUT

LREAL2LREAL_5
REQ CNF
LREAL2LREAL

1.0
IN OUT

PVDERATOR_PROP
REQ CNF
PVDERATOR_PROP

0.0
ACT
SET
KP

DF

MATLAB
INIT
RSP

INITO
IND

SERVER_1_2
0.1

QI
ID
SD_1

QO
STATUS

RD_1
RD_2

LREAL#0

LREAL#5000

LREAL#0.5
LREAL#1

TRUE
localhost:61500

Figure 6.12: IEC 61499 application set up for co-simulation of PV curtailment using a propor-
tional controller with Matlab®.
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Figure 6.13: Results of a PVprog 4diac/Matlab® co-simulation: Grid feed-in power after curtail-
ment using a P controller (Controller A) on a sunny day.

Only one socket on each side is used in order to reduce communication overhead. In
a real application, the PV power and load would likely each require their own CSIFB
unless the data are transferred via a centralized logger. The grid feed-in power is
determined according to equation 5.6 using the FB PVFEEDIN CALC FB in the FORTE
application. Its output is normalized to PSTC and passed on to the PVDERATOR PROP

function block discussed in section 5.2.1, with its coefficient set to 1. The derating factor
is delegated back to Matlab®, where the subsequent PV power is curtailed accordingly
and sent to FORTE in the next time step.
Figure 6.13 visualizes the simulation results on a sunny day. While it is impossible to
perfectly curtail the feed-in power in such a way that the set value is never exceeded
using a P controller, the 4diac application achieves good results regarding the 10 min
running average, which is the reference value for the German KfW programme [16]. As
is illustrated in figure 6.13, the 10 min running average of the feed-in power sometimes
falls below the 50 % limit (2,500 kW in this instance) when sudden cloud coverage
or load peaks occur. In these cases, temporarily decreasing the derating factor may
result in a slight reduction of the curtailment losses. In an attempt to achieve this,
the PVDERATOR NMIN MEAN was created (see section 5.2.2). Because the function
block already implements the computation and normalization of the feed-in power, its
implementation in an IEC 61499 application (see figure 6.14) is simpler than that of its
proportional counterpart. In this section, it shall be referred to as “Controller B”. The
three PID coefficients were tuned automatically using the following empirical method:

i) Starting with each coefficient set to zero, Kp is increased slightly and a simulation
of a few selected days is run after each increment. This is continued until the
10 min average of the simulated feed-in power exceeds the set value by a certain
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tolerance. Every time the stopping criteria is met, the last increase is undone and
the increment is reduced by half until the reduction by a certain threshold cannot
prevent the stopping criteria from being met.

ii) Then, the same is done for Ki (with negative increments). Here, the stopping
criteria is a failure to increase the total energy fed into the grid.

iii) Upon completing the incrementing of Ki, the iteration returns to step (i).

iv) When both Kp and Ki can no longer be incremented without improving the
simulation results, the Kd iteration begins, returning to step (i) upon completion.

v) The iteration is finished when neither of the three coefficients can be incremented
to improve the result.

vi) Finally, the saved results of every iteration step are analysed and the coefficients
that resulted in the highest feed-in energy are returned.

For the simulations, an excerpt of the same data that were used for the 4diac/Matlab®

co-simulations [21] was used with a PV power generation profile and a corresponding
load profilei. For increased performanceii, the PVDERATOR NMIN MEAN FB was replic-
ated in Matlab®. The result of the curtailment using Controller B in a 4diac/Matlab®

co-simulation is compared to that of the previous simulation using Controller A with the
same data in figure 6.15. There are only few differences, and a difference between the
momentary feed-in power flows is barely recognizable most of the time. Most notably,
the feed-in power is increased at times when the 10 min running average is below the
set limit (e.g., around 1 PM).

iDue to the many fluctuations of a load profile, using a PV generation profile without a load profile in
the tuning process returns completely different coefficients.

iiThe overhead of TCP/IP communication would result in extremely long durations for the hundreds of
simulations performed in the iteration process.
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Figure 6.14: IEC 61499 application set up for co-simulation of PV curtailment using a PID
controller (Controller B) with the 10 min mean as the set value with Matlab®.
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Figure 6.15: Comparison of the grid feed-in power after curtailment using a PID controller with
regard to the 10 min running average (Controller B) on a sunny day with that after
curtailment using a P controller with regard to the momentary value (Controller A).
Temporal resolution of the input data: 1 s.

However, with Controller B, slight over-shots occur when the running mean exceeds the
set limit. Nevertheless, this appears to be common practise, even without fluctuations
caused by clouds or the load [22, p. 106], and overall, the set limit of the running
average is held sufficiently. Figure 6.16 compares the two controllers in a co-simulation
using 1 min resolved input data.

Figure 6.16: Comparison of the grid feed-in power after curtailment using a PID controller with
regard to the 10 min running average (Controller B) on a sunny day with that after
curtailment using a P controller with regard to the momentary value (Controller A).
Temporal resolution of the input data: 1 min.

67



Connection of IEC 61499 applications with Matlab®

There is barely any difference between the two results, and in both cases, the 10 min
running average exceeds the set limit. The result demonstrates that 1 s resolved input
data is necessary to validate the controller’s serviceability in a real application. It does,
however, appear that the 10 min running mean averages around the set limit. Thus,
using 1 min resolved input data should suffice for a rough estimate of the total annual
curtailment losses in a system simulation.

6.3.3. IEC 61499 combined PVprog and PV curtailment co-simulation with
Matlab®

The previous PVprog simulations described in section 6.3.1 assume the use of a perfect
controller that curtails with regard to the momentary feed-in power as a set value.
Any PV power surpluses that exceed the limit are cut off immediately, with no control
error. As demonstrated in section 6.3.2, this is not the case for a real system. Thus,
the curtailment and PVprog subapplications were combined into a single IEC 61499
application and simulated using the same 1 s resolved PV power and load data [21] that
were used for the previous PV curtailment simulations in section 6.3.2. For deration,
the PVDERATOR NMIN MEAN function block is used.
The application network shares many similarities with those of the respective previous
PVprog and PV curtailment applications. The differences are described as follows:
Instead of looping its IND event output straight to the RSP input (cf. figure 6.6), the
PV GENERATOR SERVER CSIFB takes the derating factor as an input (see figure 6.17).
The event that triggers the response comes from the PVDERATOR NMIN MEAN FB. On the
one hand, the PV power is sent directly to the deration function block (cf. figure 6.14).
On the other hand, the df from the previous call to the deration FB is used to determine
what the PV power would be prior to curtailment. This is done by the FB PDER TO P

CFB illustrated in figure 6.18, which includes a selector FB to prevent divisions by zero.
Along with the load, for which the set-up has no differences compared with the previous
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Figure 6.17: Set-up of the SERVER CSIFB that receives the PV power and the feed-in limit from
Matlab® in the combined PVprog and PV curtailment co-simulation.
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Figure 6.18: Composite network of the FB PDER TO P CFB.

PVprog application, the PV power prior to curtailment is sent to a subapplication that
summarizes the data into 1 min averages (see figure 6.19) before being passed to the
PVprog subapplication. The function blocks used for this purpose are discussed in
section 5.1.12. Additionally, the time stamp to DOY and TD conversion is removed from
the Clock SubApp (cf. figure 6.7) and appended to the 1 min mean conversion. For com-
munication with the battery, the set-up is almost exactly the same as shown in figure 6.8.
In addition to the SoC, however, the power that was used to charge or discharge the
battery Pbat is output (see figure 6.20). Pbat is sent to the PVDERATOR NMIN MEAN FB,
where it is used to determine the grid feed-in power for the purpose of adjusting df . As
there are now two CSIFBs that send a response to Matlab®, the communication set-up
on the Matlab® side had to be adjusted accordingly.

ONEMINMEAN_PLD

REQ CNF1
CNF0

F_N_MIN_MEAN_LREAL
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X
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Y
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R
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Clock_SubApp.CLOCK.RD_1
LoadMedter_SubApp.LOAD_W.OUT
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E_SPLIT_9.EO2

PVprog_SubApp.PVPROG_LOCK_0_0.L
PVprog_SubApp.PVPROG_LOCK_0_0.TDI
PVprog_SubApp.PVPROG_LOCK_0_0.DOYI
PVprog_SubApp.PVPROG_LOCK_0_0.PPVI
PVprog_SubApp.PVPROG_LOCK_0_0.PLDI

Figure 6.19: Subapplication used for computing the 1 min means of the PV power and load and
converting the time stamp to DOY and TD integers.
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BATTERY_POWER
REQ CNF
LREAL2LREAL

1.0
IN OUT

SOC_1
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Figure 6.20: Set-up of the CLIENT SIFB that communicates the battery data between Matlab®

and the PVprog subapplication in 4diac within the combined PVprog and PV
curtailment co-simulation.

The sequence of a simulated time step is as follows:

i) Matlab®: Compute the curtailed PV power with df received in the previous time
step and send it to 4diac using the reqNorsp() method. Like req(), a request is
sent, but it allows to execute further lines of code before waiting for a response
from FORTE.

ii) Matlab®: Send the load and time stamp using the req() method.

iii) Matlab®: Call waitForData() on the battery server socket and await a response
from FORTE.

iv) FORTE : Perform the PVprog algorithm on the received data and send the set
power to Matlab®. The PV power prior to curtailment is computed using df from
the last time step.

v) FORTE : Wait for the arrival of Pbat before proceeding. This is implemented with
rendezvous FBs.

vi) Matlab®: Simulate the battery with the received set power and send the resulting
Pbat to FORTE.

vii) Matlab®: Call waitForData() on the PV generator client socket and await a
response from FORTE.

viii) FORTE : Compute the grid feed-in power and adjust df . Send the new df to
Matlab®, triggering the simulation of the next time step.

The co-simulation was performed with two variations of the application. In the first one
(Application A), the derated PV power is passed to the ProgErrCtrl function block,
and in the second one (Application B), the PV power before curtailment is used. In both
cases, the non-derated PV power is passed to the forecaster function blocks.
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(a) Derated PV power passed to the ProgErrCtrl FB (Application A).

(b) PV power before curtailment passed to the ProgErrCtrl FB (Application B).

Figure 6.21: Results of the combined PVprog and PV curtailment applications co-simulated
with Matlab®. Nominal PV power: 5 kWp, usable battery capacity: 5 kWh, annual
electricity consumption: 5,010 kWh

An excerpt of the results of the two co-simulations is depicted in figure 6.21. To illustrate
both aspects of the controllers, a day in which the battery capacity did not suffice to
prevent curtailment throughout the whole day was chosen deliberately. Application A
(figure 6.21a) results in the error control at times setting the battery charging power to a
too low value, causing unnecessary curtailment. Only an ever so slight increase in the
10 min running average of the feed-in power is enough to get the curtailment started.
The error control and deration then amplify each other and eventually level out, as can
be seen in figure 6.21a around noon.
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Table 6.3: Results of the combined PVprog and PV deration control application co-simulated
with Matlab®over a period of one year. Nominal PV power: 5 kWp, usable battery
capacity: 5 kWh, annual electricity consumption: 5,010 kWh.

Unit Value

Degree of self-sufficiency % 55.3
Curtailment losses % 1.2
PV generation kWh 5,066.8
Electricity consumption kWh 5,010
Direct use kWh 1,496.7
Battery charge kWh 1,518.9
Battery discharge kWh 1,275
Grid feed-in kWh 1,191.7
Grid supply kWh 2,238.3
Curtailment kWh 59.6

This issue is solved by passing the PV power before curtailment to the error control, as
is done in Application B (figure 6.21b). Due to the higher power surplus being reported,
the battery charging power is set to a higher value, and unnecessary curtailment is
prevented. In both cases, the 10 min running average of the feed-in power rarely
exceeds the set limit of 2.5 kW. The over-shots are of similar extent as those observed
in figure 6.15. The results of the one-year simulation of Application B are presented
in table 6.3. Due to the long simulation time of approx. 3 days, Application A was
not simulated for a whole year. Although different data from those of the previous
PVprog co-simulation (see section 6.3.1) were used, the results of the similarly sized
system share a striking resemblance (cf. table 6.2). Overall, it can be concluded that
the control applications perform well and that a conjunction of the PVprog algorithm
with PV curtailment is necessary for optimal results.
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7. Connection of IEC 61499 applications with Polysun®

Since version 9.0, the simulation software Polysun® can be extended with so-called
“controller plugins”, which - as the name implies - allow the addition of user-defined
controllers called “plugin controllers”. These controllers can be programmed in Matlab®,
JAVA™ or Python. To enable the use of Polysun’s large selection of energy system
components for validation of IEC 61499 control applications, a controller plugin was
created that allows co-simulations thereof. The easiest approach would be to incorpor-
ate the tcpip4diac class (see section 6.2) into one or more Matlab® plugin controllers.
However, this would induce a significant overhead due to the communication from
Polysun® to Matlab®, and then from Matlab® to FORTE. On top of that, a separate
instance of Matlab® is started for each plugin controller that is used. Because multiple
controllers may be required in many co-simulations, this would quickly become messy.
Since Polysun® is written in JAVA™, plugin controllers programmed in JAVA™ incur the
least overhead. Thus, a communication libraryi and a controller plugini were written in
JAVA™ using Polysun’s open source PluginDevelopmentKit. They are discussed in the
following subsections.

7.1. Communication Library

To enable a quick and easy extension of the plugin with new communication protocols,
the communication library that implements the Open Systems Interconnection (OSI)
layer design pattern was created. Aside from its usage in Polysun® plugins, it can also
be implemented into any other JAVA™-based programsii, and can be extended for the
communication with software other than 4diac. The framework is loosely based on
FORTE’s communication architecture [11]. A visualization of the design pattern as
implemented in the library is depicted in figure 7.1.
All of the layers share the same ICommunicationLayer interface, which defines meth-
ods for opening and closing connections, sending and receiving data and querying the
status. The layers used by the plugin controller are grouped together to form a “network
stack”, which is generated at runtime using a factory class (see section 7.1.5). This
stack provides the interface for sending data through the network. The controller sends
a request to the top layer, which processes it, and then passes the processed data
on to the layer below, which in turn does the same until the network layer is reached
and the binary data are sent to FORTE. In the same manner, any data received from
FORTE are delegated from the network layer through to the top layer and passed to
the controller. Using this design pattern, new communication protocols can easily be
implemented by adding new layers. Similarly, the data processing can be adjusted

iBoth the communication library and the plugin have been released as open source at https://github.
com/MrcJkb/Polysun-4diac-ControllerPlugin.

iiJRE 7 or above is required.
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- recvData()

- getConnectionState()

- getAbove()
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NETWORK STACK

Figure 7.1: Visualization of the communication architecture used in the Polysun®-4diac Con-
troller Plugin and FORTE.

for use with other programs by replacing the IEC 61499 data processing layer with
a different one. A visual overview of the classes’ relationships in the Polysun-4diac
communication library is presented in figure 7.2.
All layers implement the ICommunicationLayer interface and the IForteSocket

provides the interface for use by plugin controllers. An implementation of the fact-
ory design pattern is applied for network stack generation, which is performed by the
CommLayerParams class. The following subsections provide an overview of the library
to readers who intend to use it for the development of additional plugin controllers for
communicationi.

iA complete javadoc documentation is available online at https://mrcjkb.github.io/

Polysun-4diac-ControllerPlugin, and is also included in the library.
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Figure 7.2: Overview of the Polysun-4diac communication library visualizing the classes’ re-
lationships. The interface implementations are colour coded, and methods that
invoke methods on another interface are marked with a bold typeset.

7.1.1. The ICommunicationLayer interface

The most important methods of the ICommunicationLayer interface that is implemen-
ted by all OSI layers are listed as follows:

• openConnection() Layers are constructed in an uninitialized state. This method
initializes the layer, and if necessary, creates additional layers below, initializing
them, too. Its input parameter is a factory class. Since none of the layers are
aware of which specific layers are below, the factory class is used to initialize
them.

• closeConnection() Calls closeConnection() on the layer below and performs
all necessary clean-up operations.

• sendData() Processes data received from the layer above and passes them to
the layer below. If there is no layer below, the data are passed to the network.

• recvData() Waits for data to be received from the layer below (or the network if
there is no layer below), processes them and passes them to the layer above.

• getConnectionState() Returns true if the layer or the layer below is connected
to a network, false otherwise.
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7.1.2. The IForteSocket interface

The IForteSocket interface is used by the plugin controller. It acts as a façade for the
network stack and is implemented by the top layer. The additional tasks of a class that
implements the IForteSocket interface include buffering data before they are sent to
the network stack and storing data that were received. It also includes methods for
ensuring that the expected data types have arrived. The most important methods are
summarised as follows:

• disconnect() Calls closeConnection() on the top OSI layer. If necessary,
additional clean-up is performed. There is no connect() method, because
opening the connection is handled by the factory class.

• put() Adds data to the internal buffer.

• isX() (e.g., isDouble(), isInt(), ...) Used to determine if the next variable on
the stack is of a certain data type.

• getX() (e.g., getDouble(), getInt()) Returns the variable on top of the stack
and increments the buffer’s position so that it points to the next variable on the
stack.

• sendData() Calls the top layer’s sendData() method.

• recvData() Calls the top layer’s recvData() method.

7.1.3. Communication Layers

The OSI layers included in the library are as follows (listed from top to bottom):

• AbstractCommunicationLayer This abstract class implements the
ICommunicationLayer interface and provides the default behaviour. It exists only
for the maximisation of code reuse.

• CommFunctionBlockLayer If the connected IEC 61499 function block’s number
of data inputs differs from its number of outputs, this layer is used to separate
processing of the data to be sent and of the data to be received. It is an exceptional
layer that holds a reference to two AbstractDataBufferLayers below; one for
the input data and one for the output data (see figure 7.3, left). Since it is a top
layer, it also implements the IForteSocket interface.

• AbstractDataBufferLayer This class provides an interface for OSI layers that
process and buffer the data. Any class that extends this class can either act as
the top layer (see figure 7.3, right) if the connected function block’s number of
data inputs is the same as its number of outputs, or as a middle layer below the
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CommFunctionBlockLayer. It combines the IForteSocket and
AbstractCommunicationLayer into one interface and adds an initialize()

method used for initializing the internal data buffer.

• ForteDataBufferLayer An extension of the AbstractDataBufferLayer that
is specialised on the conversion between JAVA™ objects and IEC 61499 data
types. As a subclass of the AbstractDataBufferLayer, it can be used as a
top layer or be placed as one of the AbstractDataBufferLayers below the
CommFunctionBlockLayer. This layer can be exchanged with layers that imple-
ment new communication protocols or data processing for other applications.

• IPcommunicationLayer This middle layer is responsible for setting up an IP
connection below, depending on what is specified by the factory class.

• TCPclientCommLayer Bottom OSI layer for handling TCP/IP communication of
a client socket. Intended for communication with an IEC 61499 SERVER function
block (see section 3.4.2).

• TCPserverCommLayer Bottom OSI layer for handling TCP/IP communication of a
server socket. Intended for communication with an IEC 61499 CLIENT function
block (see section 3.4.2).

• UDPpublisherCommLayer Bottom OSI layer for handling UDP/IP communication
of a publisher socket. Intended for sending data to an IEC 61499 SUBSCRIBER

function block (see section 3.4.1). If this layer is at the bottom of the network
stack, attempting to call recvData() or readX() will throw an IOException.

• UDPsubscriberCommLayer Bottom OSI layer for handling UDP/IP of a subscriber
socket. Intended for receiving data from an IEC 61499 PUBLISHER function block
(see section 3.4.1). If this layer is at the bottom of the network stack, attempting
to call sendData() will throw an IOException.

7.1.4. Data type processing

The conversions performed by the ForteDataBufferLayer between JAVA™ objects
and IEC 61499 data types are listed in table 7.1. Since JAVA™ only supports two
integer types, int and long, and since it does not support unsigned integers, all of the
IEC 61499 integer types can be mapped to the two primitives. To specify which type
of variable is to be mapped, a ForteDataType enumerationi is used. Its value names
are the same as the supported IEC 61499 data types, e.g., ForteDataType.LREAL or
ForteDataType.DATE AND TIME.

iA class that represents a set of predefined constants.
iDateAndTime is part of the Polysun-4diac ControllerPlugin library (see section 7.1.6).
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AbstractDataBufferLayer

IPcommunicationLayer

TCPserverCommLayer

Figure 7.3: Two exemplary scenarios for the network stack. Left: A stack in which the number
of data inputs is not the same as the number of data outputs. Right: A stack in
which the number of data inputs and outputs are the same.

7.1.5. Communication Layer factory

As mentioned earlier, none of the layers know anything about each other. To create the
network stack, a factory class is used, which contains all of the parameters required
for opening the connection and initializing all of the individual layers. It is implemented
in the class CommLayerParams, which extends java.net.InetSocketAddress and is
constructed with a network address and a port number. To set the type of service, the
setServiceType() method is called with an enumeration of the desired service as
an input. The IEC 61499 data types that are to be sent and received are added after
construction via the class’s addInput() and addOutput() methods, whereby the order
in which the inputs and outputs are added must match the order of the IEC 61499 FB’s
data outputs and inputs from top to bottom, respectively. To generate an IForteSocket

object that holds the network stack, the makeIPSocket() factory method is used. An
exemplary initialization of a connection between a JAVA™ application and a CLIENT

function block with two data inputs and one data output on FORTE is as follows:

Table 7.1: JAVA™ object and primitive types supported by the ForteDataBufferLayer and
their IEC 61499 equivalents.

JAVA™ data types IEC 61499 equivalents

boolean BOOL

int SINT, INT, DINT, USINT, UINT, UDINT
long LINT, ULINT
float REAL

double LREAL

String STRING

DateAndTimei, java.util.Calendar DATE AND TIME
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CommLayerParams params = new CommLayerParams("localhost", 61499);

params.setServiceType(ForteServiceType.SERVER);

params.addInput(ForteDataType.LREAL); // Adds an LREAL data input

params.addOutput(ForteDataType.LREAL , 5); // Adds an LREAL array

// data output of length 5

params.addOutput(ForteDataType.BOOL); // Adds a BOOL data output

IForteSocket socket = params.makeIPSocket (); // Opens the connection.

To send data to FORTE, the variables are stored in the internal buffer via the put()

method before calling sendData().

socket.put (5.0); // Add a double to the byte buffer

socket.sendData (); // Sends the binary data to FORTE

Unlike Matlab®, the JAVA™ programming language enforces type safety, preventing
programs from accessing memory in unexpected ways. Thus, a method for checking the
correct type before attempting to access buffered data was implemented. For example
the correct way to receive an LREAL array and a BOOL variable from FORTE is:

socket.recvData (); // Returns when the connected IEC 61499 FB has

// sent its data

double dVar;

boolean bVar;

if (socket.isDoubleArray ()) {

dVar = socket.getDoubleArray ();

} else {

// Handle or throw exception

throw new PluginControllerException("Unexpected data type.");

}

if (socket.isBool ()) {

bVar = socket.getBool ();

} // exception handling omitted for brevity

7.1.6. The DateAndTime class

Polysun® simulations do not include time stamps. Instead, an integer that represents
the number of seconds since the beginning of the simulation is passed to the plugin
controller’s control() method. To add support for the IEC 61499 DATE AND TIME data
type, the DateAndTime class was created. A DateAndTime object has the same internal
representation as a DATE AND TIME variable in FORTE (discussed in section 6.2.1).
Upon construction, the date at the beginning of the simulation is specified. This can
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either be done with a set of integers or with a java.util.Calendar objecti, which can
be used to dynamically set the beginning of the simulation according to the operating
system’s clock.

import java.util.Calendar;

// initialization with

// year , month , day , hour , minute , second , millisecond

DateAndTime dt = new DateAndTime (2017, 1, 1, 0, 0, 0, 0);

// initialization with Calendar

DateAndTime dt2 = new DateAndTime(Calendar.getInstance ());

In the plugin controller’s control() method, the time can be set according to the
simulationTime input (see the Polysun® user manual [23]) and passed directly to an
IForteSocket.

dt.setSimulationTimeS(simulationTime);

socket.put(dt);

7.2. Polysun-4diac controller plugin

The Polysun-4diac controller plugin (named ForteActorSensorPlugin) was developed
using the open source PluginDevelopmentKit that ships with Polysun® 9.0 and above.
The internal implementations of the individual plugin controllers shall not be discussed
any further in this thesis. Readers who intend to use the published project for the
further development of Polysun-4diac plugins or other communication plugins based
on this project are advised to refer to the Polysun® user manual [23] as well as the
PluginDevelopmentKit’s and this project’s respective javadoc documentations.

7.2.1. Use of 4diac plugin controllers in Polysun®

Because Polysun® is GUI based, simulations cannot be programmed freely, i.e. the
user has no influence over the sequence in which the components are simulated. The
exception are controllers: The order in which the controllers are invoked is equal to the
order in which they are placed in the system. This aspect is of great importance for the
design of Polysun®/4diac co-simulations. To provide users with as much flexibility as
possible when designing co-simulations, the plugin controllers are separated into three
types: Sensors for sending data to FORTE, actors for receiving data from FORTE and
combinations thereof. A set of component-specific plugin controllers were developed

iSupport for the more flexible java.time.LocalDateTime will be added when Polysun® is
updated to support JAVA™ SE 8.
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for the use in this project. Furthermore, three generic controllers (one of each type)
were created for users without knowledge of the JAVA™ programming language who
require communication with additional components. All of the plugin controllers, with
the exception of the “Generic 4diac Controller” (see section 7.2.5), implement a TCP/IP
client service. Therefore, their FORTE counterparts make use of SERVER function
blocks, and must be initialized before the plugin controllers. The plugin controllers are
initialized at the beginning of the simulation.
To enable the use of 4diac plugin controllers in Polysun®, the JAR file “ForteActor-
SensorPlugin.jar” must be placed in Polysun’s ..\plugins directory (The default for
Windows is %userprofile%\Polysun\plugins). After restarting Polysun®, the controllers
can be added to a system by selecting the Controller component and clicking anywhere
in the system. A list of options pops up in which the “Plugin controller” must be selected.
This opens a drop-down list in which the individual plugin controllers can be placed
(see figure 7.4).

Figure 7.4: Placement of the 4diac plugin controllers in Polysun®.
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7.2.2. Sensor plugin controllers

The sensor plugin controllers can be used for sending data to FORTE. One each
was created for the battery, the photovoltaics and the electrical consumers (load),
respectively. Additionally, a generic sensor controller was developed for the use with
any arbitrary Polysun® component that has connectible input parameters. The GUI of
the “Battery Sensor” controller is displayed in figure 7.5, in which the relevant settings
and control inputs are highlighted in orange. Each sensor has the same settings. The
host name and port number must be set according to the function block on the receiving
end with which the plugin controller is to be connected. Additionally, each sensor is
given the option to send a time stamp (the translation from Polysun’s simulation time to
the IEC 61499 DATE AND TIME format is discussed in section 7.1.6). If the option “yes”
is selected, users can set the beginning of the simulation by specifying the date and
time in the dd.mm.yyyy HH:MM:SS format. Finally, the controller gives the choice of
whether to wait for a response or not. To take full advantage of the TCP’s stability, it is
recommended to wait for a response, if possible. However, this may not be desirable in
certain situations (see the 4diac/Matlab® co-simulation in section 6.3.3, for example).
All of the sensors and their control inputs are listed in table 7.2.

Figure 7.5: GUI of the “Battery Sensor” plugin controller in Polysun®.
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Table 7.2: Forte sensor plugin controllers and their control inputs.

Name Control inputs Input units

Battery Sensor State of charge -
Battery transfer W

Photovoltaics Sensor PV power output AC W
Maximum grid feed-in -

Load Sensor Electricity consumption W
Generic Sensor Up to five inputs Any

The inputs of the component-specific sensorsi must not forcibly be set to what is
indicated with their names. For example, the “Battery transfer” input can be connected
to any component’s output as long as it has the unit W. The controller merely provides
an interface as a guideline. If a sensor has more than one control input, only one must
be connected; the others are optional. Only the Generic Sensor can be connected to
zero inputs as long as its “Send time stamp” option is configured to “yes”. For each
of the component-specific plugin controllers, an IEC 61499 CSIFB counterpart was
created in 4diacii. The interface of the BatterySensor function block that connects to
the Battery Sensor plugin is depicted in figure 7.6.
All of the sensor function blocks share a similar interface and act as a façade for two
SERVER FBs - one with two data outputs coupled with the IND event output and one
with three. Which one is used depends on the input TSF, which indicates whether the
connected plugin controller has its “Send time stamp” option set to “yes” (TSF = true)
or “no” (TSF = false). The rest of the interface is the same as that of a SERVER FB,
except that the RSP input event is redundant and type-safety is enforced for the data
outputs. Apart from the time stamp, all of the plugin controllers’ control inputs must
be connected to a component if they are used in conjunction with the provided sensor
function blocks.

iBattery-, Photovoltaics- and Load Sensor.
iiThe .fbt and C++ source files of the plugin CSIFBs are included as part of the library.
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Input event qualifier     -    BOOL
Connection identifier     -    WSTRING

Flag for whether to receive time stamp or not     -    BOOL

Initialization Request     -    Event

BOOL     -    Output event qualifier
WSTRING     -    Service status
LREAL     -    State of charge [0,..,1]
LREAL     -    Battery transfer in W
DATE_AND_TIME     -    Time stamp (optional)

Event     -    Initialization Confirm
Event     -    Execution Confirmation

Figure 7.6: Interface of the BatterySensor function block.
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7.2.3. Actor plugin controllers

The actor plugin controllers can be used to receive data from FORTE. Since the load
cannot be controlled in Polysun®, actors were only created for the battery and the
PV field - with the addition of a generic actor that can be connected to an arbitrary
controllable component. The GUI of the “Battery Actor” is presented in figure 7.7 with
the most relevant elements highlighted in orange. Since actors only receive data, the
only configurations required are the address, the port number and the control outputs.
A complete list of the actor plugin controllers and their control outputs can be found
in table 7.3. The interface of the corresponding BatteryActor CSIFB is depicted in
figure 7.8. It acts as a wrapper for a single SERVER FB with a similar interface. However,
it mirrors the Polysun® sensor function blocks, enforces type-safety for the data inputs
and the IND output event is omitted due to its redundancy.

Figure 7.7: GUI of the “Battery Actor” plugin controller in Polysun®.

Table 7.3: Forte actor plugin controllers and their control outputs.

Name Control outputs Output units

Battery Actor Set charging power W
Control mode -

Photovoltaics Actor Derating factor -
Generic Actor Up to five outputs Any
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Input event qualifier    -    BOOL
Connection identifier     -    WSTRING
Set charging power in W    -    LREAL

Control mode    -    BOOL

Service Initialization    -    Event
Service Response    -    Event

BOOL    -    Output event qualifier
WSTRING    -    Service status

Event    -    Initialization Confirm

Figure 7.8: Interface of the BatteryActor function block.

7.2.4. SG Ready heat pump plugin controller

An additional plugin controller was created to enable co-simulations with IEC 61499
applications that use the HeatPumpController FB (see section 5.3). While the contact
states are clearly defined in the SG Ready standard, the heat pumps’ internal controllers
and operation modes are not. At the time of writing this thesis, heat pumps in Polysun®

do not yet support the SG-Ready interface. However, they can be controlled freely using
a heating controller component, a programmable controller or a plugin controller. To
enable co-simulations with IEC 61499 applications that control heat pumps according
to the SG Ready standard, a plugin controller was developed that acts as an adapter to
the interface. From an IEC 61499 control application’s point of view, the SG Ready heat
pump plugin controller is an actor. Unlike the actor plugins described in section 7.2.3,
however, this one performs computations to simulate an internal heat pump controller
in addition to the receipt of control signals from an IEC 61499 CSIFB.
It is used in combination with one of Polysun’s built-in auxiliary heating controllers,
which represents the heat pump’s normal operation mode (SG Ready mode 2). The
auxiliary heating controller’s output signal is delegated to the SG Ready adapter, and
either left as is or overridden, depending on the operation status. The heating controller
is configured as if it were the main controller, but the String, “NORMALMODE” must be
typed into the description box (highlighted in figure 7.9) in order for it to be recognized
as the heat pump’s “internal” controller and to have its output passed to the SG Ready
adapter. To make this possible, an IOutputOverridable interface had to be added to
the Polysun® PluginDevelopmentKit and incorporated into Polysun’s source code. For
this reason, the feature cannot be used with Polysun® 10.0. It will be made available in a
future release. Effectively, the IOutputOverridable interface is an open source façade
for Polysun’s closed source controllers. Plans have been drafted for a more intuitive
way of overriding controller outputs, but the implementation falls outside the scope of
this thesis. The SG Ready heat pump controller’s GUI is presented in figure 7.10. Since
it takes a storage tank’s temperature as an input signal and the heat pump’s internal
auxiliary heater as an output, the controller acts as both an actor and a sensor from
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Figure 7.9: Configuration of the auxiliary heating controller for override by the SG Ready heat
pump adapter in Polysun®.

Polysun’s point of view. In addition to the usual connection settings, users can configure
the SG Ready control modes 3 and 4. This is done in part by defining the upper
temperature thresholds for the buffer storage at which the internal algorithm forces a
normal operation no matter what input signal is received from FORTE. Furthermore,
to set a hysteresis for the control modes, the amount by which the storage buffer’s
temperature must drop before allowing the set control mode again must be defined.
Finally, the user is free to choose whether each control mode includes the use of
the heat pump’s internal auxiliary heater, if available. The SGReadyHeatPumpAdapter

CSIFB’s interface is pictured in figure 7.11. Like all other Polysun® plugin actors, it acts

Figure 7.10: GUI of the “SG Ready Heat Pump Adapter” plugin controller in Polysun®.
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Input event qualifier     -    BOOL
Connection Identifier     -    WSTRING

SG-Ready control signal 1     -    BOOL
SG-Ready control signal 2     -    BOOL

Service Initialization     -    Event
Service Response     -    Event

BOOL     -    Output event qualifier
WSTRING     -    Service status

Event     -    Initialization Confirm

Figure 7.11: Interface of the SGReadyHeatPumpAdapter function block.

as a wrapper for a SERVER function block, hiding all of the unused outputs. It sends two
boolean signals, which represent the on/off switches of the SG Ready interface, to the
Polysun® plugin.

7.2.5. Generic 4diac plugin controllers

To enable a flexible use of the Polysun-4diac plugin controllers for users with little or no
JAVA™ knowledge, three generic plugin controllers were created: An actor, a sensor
and a controller that can both send data to and receive data from any IEC 61499 CSIFB.
The two-way generic 4diac controller’s GUI is displayed in figure 7.12.

Figure 7.12: GUI of the generic 4diac plugin controller in Polysun®.
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Up to five inputs and outputs each can be added dynamically as they are connected to
the components. The four IEC 61499 basic communication service types are possible,
whereby a CLIENT plugin controller communicates with a SERVER function block, etc.

7.2.6. Battery pre-simulation socket plugin

In order to demonstrate the use of the ABatteryModel adapter (see section 5.1.4),
an IPreSimulatable interface was incorporated into Polysun’s source code and the
PluginDevelopmentKit. In its current form, the open source façade allows plugin con-
trollers to trigger the pre-simulation of certain closed source Polysun® components (i.e.
the battery) and to retrieve the results. Like the IOutputOverridable interface (see
section 7.2.4), the IPreSimulatable interface is not available in Polysun® version 10.0,
and will be usable with the next release. An excerpt of the plugin controller’s GUI
is pictured in figure 7.13. Since the plugin is technically not a controller, it has no
inputs or outputs. It is simply placed in a system that has a battery. A reference to
the battery (if available) is passed to the plugin at the beginning of the simulation, and
the internal implementation transfers the data between the battery and the connected
PolysunBatteryModel function block on FORTE. The only inputs required from the
user are the usual connection parameters, the PVprog forecast horizon in h and the
interval in s at which the pre-simulation iteration is triggered on FORTE with a SIM

event. In the case of the PVprog algorithm, the call interval is equal to the the forecast
update frequency: 15 min.

Figure 7.13: Excerpt of the “Battery Presimulator Socket” plugin controller’s GUI in Polysun®.
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The corresponding PolysunBatteryModel function block has a very similar interface
to the BatteryModelServer FB mentioned in section 5.1.4, with an additional R input
event used to end the iteration. However, its internal implementation differs. The
composite network is presented in figure 7.14. Since the BatteryOptimizer issues
the SIM event many times during the optimization iteration (see section 5.1.5), the
Polysun® plugin has to await the data in a while loop. When the BatteryOptimizer

has found an optimum, it must let the plugin know that it has finished its iteration, so
that it can break out of the loop and the Polysun® simulation can continue. To do so, the
BatteryOptimizer’s CNF output event can be used to trigger the PolysunBatteryModel’s
R input event. The E TF function block translates the R and SIM events into a BOOL data
value, which is sent to Polysun® as an indication for whether to continue waiting or not.
Similarly, the E PERMIT FB only delegates the IND output event to the ABatteryModel

adapter if the Polysun® plugin sends true back.

7.3. 4diac/Polysun® co-simulations

In the following section, the Polysun-4diac controller plugin is first tested in a PVprog and
curtailment co-simulation. Then, a simple PV and heat pump system is co-simulated
with the HeatPumpController function block and finally, the two control applications
were combined and validated in further co-simulations. Pre-existing limitations that
were taken into consideration beforehand include:

• In every time step, the controllers are processed first (with the exception of certain
components, i.e. the PV field) followed by the components. The controllers
are processed in the order in which they were placed in the GUI. It is currently
impossible for a user to set the order of the elements as was done in section 6.3.3.

• In its current incarnation, Polysun® does not have the ability to read meteorological
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Figure 7.14: Composite network of the PolysunBatteryModel function block.
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data with a temporal resolution other than 1 h. It is, however, possible to activate
a linear interpolation of the data in the advanced settings. A re-engineering of
Polysun’s weather data computations is planned for the future, but exceeds the
scope of this thesis.

To minimize the error caused by the inability to define the order in which the components
are computed, a high temporal resolution is required. As a matter of fact, however, this
may even be a more realistic scenario for real-time controllers, because many system
components can have dead times of up to 10 s [24]. Temporal resolutions of between
1 s and 15 min can be enforced in Polysun® using the “Fixed time step controller”, a
built-in plugin controller. In all of the simulations, the interpolation preference was set to
linear. For a visual evaluation of the results, two I/O plugin controllers that export their
sensor inputs to Matlab® MAT and CSV files were createdi.

7.3.1. IEC 61499 combined PVprog and PV curtailment co-simulation with
Polysun®

To verify the adequacy of Polysun® for co-simulations with real time IEC 61499 control
applications, the previously validated PVprog and curtailment application (see sec-
tion 6.3.3) was used for the test run. The Polysun® system diagram with the plugin
controllers used to communicate with the control application is depicted in figure 7.15.
It has approximately the same dimensions as the system that was simulated in sec-
tion 6.3.1 and uses the same load and weather data sources that were used in the

iThey are available for download at https://github.com/MrcJkb/Polysun-IO-Plugin/releases.

Figure 7.15: Diagram of the system used in a combined PVprog and PV curtailment co-
simulation with Polysun®. Nominal PV power: 4.9 kWp, annual electricity con-
sumption: 5,000 kWh, usable battery capacity: 5 kWh.
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original PVprog release. The 0° south oriented PV modules’ tilt angles are set to 30°.
The IEC 61499 application is almost exactly the same as the one used in section 6.3.3,
with only the CSIFBs having been switched out for the Polysun® plugin function blocks
described in section 7.2 and the SimpleBatteryModel having been replaced by the
PolysunBatteryModel. The results of a co-simulation are presented in figure 7.16 for
two selected days. On the left hand side is a sunny day in which the PVprog algorithm
is enough to prevent all curtailment by shifting the battery’s charge to midday. On the
right hand side, the day starts off with a lot of clouds, causing the battery to begin
charging at a lower power threshold. When the sun starts shining, the remaining
battery capacity is not enough to absorb the entire PV surplus and the curtailment
kicks in. Because the controller sets the derating factor according to the 10 min running
average using a PID loop, a small overshoot of the feed-in power can be observed just
before 12 PM. Altogether, it can be concluded from the visual simulation results that
the PVprog algorithm and curtailment controller have excellent coordination and that
Polysun® is a more than capable tool for the design and validation of the controller.
While its current inability to read temporally high resolved weather data is a definite
drawback, the communication and looping overhead in JAVA™ is significantly lower than
it is in Matlab®. This resulted in a highly reduced simulation time compared to the same
co-simulation with Matlab®. On the machinei used for the simulations, Matlab®, using
1 s resolved data, took approximately 3 days, while Polysun® only needed ca. 2.5 h for
the same resolution and time frame. That is a performance improvement by a factor of
almost 30.

iIntel i7-6600U processor, 2.6 GHz (3.4 GHz turbo), 16 GB / 1,600 MHz RAM.

Figure 7.16: Results of the combined PVprog and PV curtailment application co-simulated with
Polysun® on two selected days. Nominal PV power: 4.9 kWp, annual electricity
consumption: 5,000 kWh, usable battery capacity: 5 kWh.
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7.3.2. IEC 61499 SG Ready heat pump controller co-simulation with Polysun®

In a second step, a simple PV system with a heat pump was simulated. The Polysun®

system diagram is pictured in figure 7.17. The system is based on the Polysun® standard
template, “16b: Space heating (heat pump, 2 tanks)” with the following adjustments
having been made:

• Added a 9.9 kWp PV system.

• Added an electric grid for feed-in.

• Added an electric consumer profile (5 MWh annual consumption).

• Reduced the heat pump’s thermal power from 15 kW to 10 kW (and its nominal
electrical power from 3.9 kW to 3.3 kW).

• Rotated the three-way switching valve between the heat pump and the storage
tanks and adjusted the auxiliary heating controller accordingly. This was done
so that water flows from the heat pump into the drinking water tank when the
auxiliary heating controller is overridden by the SG Ready heat pump adapter.

For heating, the system has a 600 l buffer tank. This storage tank is ignored by the
heat pump controller, since it is mainly used in winter, when there are barely any PV
surpluses. The relevant buffer is the 300 l drinking water tank that is active all year, and

Figure 7.17: Diagram of the system used in a heat pump controller co-simulation with Polysun®.
Nominal PV power: 9.9 kWp, heat pump’s nominal power: 3.3 kW (elec-
trical), 10.1 kW (thermal), annual electricity consumption of electrical appliances:
5,000 kWh, annual electricity consumption of thermal appliances: 5,400 kWh.
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is set to satisfy a hot water demand of 50 ◦C . It has an internal heater for backup,
that theoretically should not be needed and is charged by the heat pump via a heat
exchanger. A PV Sensor sends the solar generation power to the FORTE application
(see figure 7.18) and a Load Sensor plugin sends the total electrical load. After running
the inputs through the HeatPumpController FB, the two SG Ready control signals
are sent to an SG Ready Heat Pump Adapter, which overrides the control signal of
Polysun’s built-in auxiliary heating controller. The auxiliary heating controller represents
the heat pump’s internal controller. It turns the heat pump on and off, and switches the
three way valve depending on the temperatures in the storage buffers. The SG Ready
heat pump adapter plugin measures the temperature in the third bottommost layer of
the 12 layer drinking water tank with a switching threshold set to 55 ◦C and a hysteresis
of 5 K for the SG Ready control mode 3 (see section 5.3). No internal heating device is
used for the amplified operation of the heat pump. The IEC 61499 heat pump controller
has its On/Off threshold set to 100 %, as per recommendation for a PSTC/PHP ratio of
3 : 1 by [19]. The simulation results of the system are compared to those of the same
system without an override of the heat pump’s auxiliary heating controller in figures 7.19
(energy flows) and 7.20 (drinking water storage tank temperatures) for a selected day.
The controller adds two load peaks of the heat pump to the day time, thus reducing
its use at night and almost completely eliminating the large grid supply peak at 6 PM.
Instead of falling steadily during the day time, the temperatures within the controlled
system’s buffer storage tank are kept at higher levels. By 6 PM, the second layer has a
temperature of above 50 °C, which is more than enough to satisfy the hot water demand.
Overall, the use of the controller increases the annual degree of self-sufficiency from
21.2 % to 24.5 % and the self-consumption ratio s from 22.3 % to 26 %. The amounts
of energy Egf fed into the grid and Egs purchased from the grid are each reduced by
364 kWh and 298 kWh, respectively. This load shift is approximately equivalent to a
month’s electricity consumption of the heat pump outside of the heating period.
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Figure 7.18: IEC 61499 application for control of a PV heat pump system.
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Figure 7.19: Results of the heat pump controller co-simulation with Polysun®. Energy flows
of a system controlled with the IEC 61499 application (left) and a system con-
trolled using only the heat pump’s internal controller (right). Nominal PV power:
9.9 kWp, heat pump’s nominal power: 3.3 kW (electrical), 10.1 kW (thermal), an-
nual electricity consumption of electrical appliances: 5,000 kWh, annual electricity
consumption of thermal appliances: 5,400 kWh.

Figure 7.20: Results of the heat pump controller co-simulation with Polysun®. Storage tank
temperatures for a system controlled with the IEC 61499 application (left) and a
system controlled using only the heat pump’s internal controller (right). Nominal
PV power: 9.9 kWp, heat pump’s nominal power: 3.3 kW (electrical), 10.1 kW
(thermal), annual electricity consumption of electrical appliances: 5,000 kWh,
annual electricity consumption of thermal appliances: 5,400 kWh.

Further improvements can be achieved for more energy efficient buildings [25] and by
fine tuning the controller’s On/Off threshold. It can be concluded from the results that
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the simple heat pump controller’s behaviour is as anticipated and that the way has been
paved for combining the heat pump controller, the PVprog controller and the curtailment
controller into a single application.

7.3.3. Combined PVprog, SG Ready heat pump and curtailment controller
co-simulated with Polysun®

As can be deducted from a brief comparison of the PV heat pump systems’ simulation
results with those of the PV battery systems, the degrees of self-sufficiency are far
lower for the former than they are for the latter. Nevertheless, adding a heat pump to
a PV battery system can further increase the overall system performance [25]. For
the use in such systems, the applications discussed in sections 7.3.1 and 7.3.2 were
combined into a single control application. It is designed in such a way that it can
be used with or without a heat pump. In any case, however, a battery is required. In
addition to the PV power before curtailment and the load, the battery’s power transfer
(positive for charging power, and negative for discharging) are sent as a third input to
the HeatPumpController. Thus, the PV surplus is now equal to the grid feed-in power
plus the curtailed PV power. The sequence of the control application is as followsi:

• Pass the PV power (before curtailment) and load to the PVprog network to
compute the set value of the battery transfer.

• Send the set battery transfer to the battery actor.

• Pass the PV power (before curtailment), load and battery transfer to the heat
pump controller function block.

• Pass the PV power (curtailed), load and battery transfer to the curtailment control-
ler function block.

• Send their outputs to the respective actors.

It must be noted that since it is an event oriented application, the order of the sequences
is arbitrary in practise. This should have no negative effect on the results. The Polysun®

system diagram (not pictured) is a combination of those in figures 7.15 and 7.17. It is
essentially the same system as the one simulated in section 7.3.2 with a usable battery
capacity of 10 kWh added to it.
To reduce the simulation time, the system was simulated with an increased temporal
resolution of 10 s. Figure 7.21 depicts the energy flows on a sunny day resulting from
a co-simulation with fOn/Off set to 1. It presents all elements of the control application:
Forecast-based battery charging, heat pump optimization and curtailment. Compared

iThe function block network is too large to fit on a single page and can be deduced from the networks
of the previously discussed applications.
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Figure 7.21: Results of the combined PVprog, curtailment and heat pump controller (version 1)
co-simulation with Polysun®. Nominal PV power: 9.9 kWp, heat pump’s nominal
power: 3.3 kW (electrical), 10.1 kW (thermal), annual electricity consumption
of electrical appliances: 5,000 kWh, annual electricity consumption of thermal
appliances: 5,400 kWh, usable battery capacity: 10 kWh.

to an uncontrolled system, in which the battery is charged as soon as PV surpluses
occur and the heat pump controller is never overridden, the degree of self-sufficiency
is increased from 39.5 % to 42 %. The self-consumption ratio improves from 44.7 % to
46 % and the curtailment losses are reduced by 443 kWh, while the grid feed-in energy
Egf is simultaneously increased by 163 kWh. Additionally, the energy Egs purchased
from the grid is reduced by 185 kWh, indicating that the controlled system is more
economic than the uncontrolled one in all aspectsi. It is apparent from figure 7.21 that
the deliberate heat pump operation during the day interferes slightly with the PVprog
algorithm. The PVprog network has to adjust its output for the heat pump, causing the
battery to temporarily charge at lower thresholds. This in turn results in curtailment of
the PV generator in the afternoon. To combat this, a variation of the control application
was created in which the heat pump’s electrical load is measured in addition to the total
load. The modified section of the control application is presented in figure 7.22. If the
SG Ready control mode 3 is active, the heat pump’s load is subtracted from the total to
estimate the electrical consumption without the heat pump. This difference load is then
passed to the data input of the LoadForecaster function block. In normal operation of
the heat pump (SG Ready mode 2), the FB receives the total load instead. This way,
the deliberately amplified use of the heat pump is treated not as a load, but as what
it really is: Energy used for charging a storage buffer. The co-simulation results are
depicted in figure 7.23.

iAs with the previous system, the performance improvement depends in part on the energy efficiency
of the building.
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Figure 7.22: Section of a function block network used to determine which load to pass to the
PVprog network for load forecasting depending on the HeatPumpController’s
output. For brevity, event and data flows that are not part of the sequence have
been removed from the diagram.

Overall, the energy flows are more stable than in the previous system. The only adjust-
ment the PVprog network has to make is to reduce the battery’s set power when the
heat pump is turned on deliberately. It no longer lowers the charging threshold. As a
result, the curtailment is reduced even further, by an additional 89 kWh.

Figure 7.23: Results of the combined PVprog, curtailment and heat pump controller (version 2)
co-simulation with Polysun®. Nominal PV power: 9.9 kWp, heat pump’s nominal
power: 3.3 kW (electrical), 10.1 kW (thermal), annual electricity consumption
of electrical appliances: 5,000 kWh, annual electricity consumption of thermal
appliances: 5,400 kWh, usable battery capacity: 10 kWh.
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However, the increased stability comes with the caveat of a reduction in the degree
of self-sufficiency by 1.6 % compared to the previous version of the controller. Egs is
increased to almost as much as it was for the uncontrolled system. That is, the increase
in the energy purchased from the grid is exactly twice as high as the reduction of the
curtailment losses. This makes version 2 of the control application with a separate
observation of the heat pump’s electricity consumption less economical than version 1.
In an attempt to further improve the performance, a third and fourth variation of the
control applications were created based on versions 1 and 2 (referred to as versions 1b

and 2b, respectively). For this, the HeatPumpController FB’s composite network (see
figure 5.32) was altered to activate SG Ready mode 4 if any curtailment occurs. The
modified network of the HeatPumpController2 FB is depicted in figure 7.24. It takes an
additional DF input for the derating factor. The only change in the application network is
that the PVDERATOR NMIN MEAN FB’s DF output is passed to the HeatPumpController2

FB. Figure 7.25 visualizes the function block’s conditions for switching between SG
Ready modes.
The conditions for switching between modes 2 and 3 remain the same as in equation 5.8.
Additionally, the controller switches from any mode it is in to mode 4 if the derating factor
is less than 1, i.e. if curtailment has just occurred. From the “Amplified II” mode, it is
impossible to switch back to “Amplified I”. The same condition is set for switching back
to normal operation from either “Amplified I” or “Amplified II”. Although it is technically
possible for the composite network in figure 7.24 to switch to mode 1 (off), this will never
materialize, because curtailment and a load deficit never occur at the same time.
For the co-simulation, it was assumed that the heat pump’s SG Ready mode 4 has its
upper temperature threshold set to 70 ◦C and that it activates the internal cartridge
heater. Table 7.4 summarizes the results of the four controller variants and compares
them to those of the uncontrolled system. Additionally, it lists the results of a system
using controller version 2b with the drinking water buffer tank’s volume increased by 150 l.
The additional volume improves the values of all considered performance indicators,
except for Egs. For brevity, this analysis was not performed on the other systems. It can
be assumed that they would see similar performance boosts. The greatest reduction
in curtailment is achieved by version 2b. From an energetic standpoint, however, the
greatest overall system improvement resulting from the control application alone is
achieved by version 1b. The total reduction in electricity purchased from the grid is
229 kWh vs. only 103 kWh for version 2b. This is a significantly greater difference than
the 24 kWh additional reduction in curtailment losses achieved by version 2b. Never-
theless, a separation of the heat pump’s load should be considered for comparison
in future applications, since the results may depend on the system dimensions and
feed-in limitation. It should be noted that versions 2 and 2b of the control application
currently cannot be used in a real system unless it is capable of measuring the heat
pump’s electricity consumption separately.
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Figure 7.24: Composite network of the HeatPumpController2 function block.
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AMPLIFIED I
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Figure 7.25: SG Ready mode switching conditions for the HeatPumpController2 function
block.

The potential to further reduce curtailment losses by separating consumption profiles
calls for the further development and use of smart devices that are capable of commu-
nicating their power flows. To enable more flexibility for the use in DSM, SG Ready
heat pumps should allow the configuration of their temperature thresholds in control
modes 3 and 4 as well as to define whether or not the internal heating element is used.

iVersion 2b with the drinking water tank volume increased from 300 l to 450 l.

Table 7.4: Comparison of the co-simulated PV heat pump battery systems’ results. Version 1:
Heat pump load not viewed separately by load forecaster. Version 2: Heat pump
load viewed separately by load forecaster. Versions 1b/2b: Same as versions 1/2
with SG Ready control mode 4 activated upon curtailment.

No controller Version 1 Version 2 Version 1b Version 2b V ↑i

a / % 39.5 42 40.4 41.9 42 42.3
s / % 44.7 46 44 45.1 46 46.8
l / kWh 708 265 176 166 142 138
Egf / kWh 4,409 4,572 4,791 4,690 4,568 4,517
Egs / kWh 6,296 6,111 6,289 6,067 6,193 6,194
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8. Implementation of new communication protocols in
FORTE

The co-simulations in section 7 revealed the potential need for smart system compon-
ents. Many such components exist already and/or are in development. To maximize their
interoperability, the Smart Premises Interoperable Neutral-message Exchange (SPINE)
communication protocol was developed by the “EEBus Initiative e.V.”. With the as-
piration to eventually use the control applications developed within the scope of this
thesis with SPINE devices, a project that implements the protocol in FORTE was star-
tedi. Due to its complexity, a full-blown incorporation of the SPINE protocol into the
FORTE communication framework exceeds the scope of this thesis by far, and may
even be a worthy topic for another thesis or project work. In addition to the SPINE
project, a simple hypertext transfer protocol (HTTP) communication layer was added to
FORTE; enabling the interoperability of IEC 61499 applications (assuming client roles)
and devices that communicate via a representational state transfer (REST) serverii.
This section briefly introduces the main aspects of the SPINE protocol, analyses the
requirements for an implementation in FORTE and presents an initial design. Finally,
the use and implementation of the HTTP communication layer are elucidated.

8.1. The SPINE communication protocol

The specifications of the SPINE protocol define the application (top) layer of the OSI
Communication Layer design pattern and are coupled with a smart home IP (SHIP)
protocol that defines the transport (bottom) layer [26]. A full technical report containing
the protocol and resource specifications for the application layer can be downloaded
from the EEBus Initiative’s website [27]. The SHIP protocol is still in the standardisation
process and its specifications have thus not yet been published. For brevity, a detailed
description of the specifications is not provided in this section. Interested readers are
advised to review the technical reports. Data are sent and received wrapped in XML
structures containing a header and a payload (body). What makes the protocol stand
out compared to other communication protocols are:

• The ability of SPINE devices to communicate data about themselves (i.e. electri-
city consumption).

• The additional control signals accepted by SPINE devices (e.g., a heat pump may
be controllable via its 4 SG Ready modes and may additionally allow the electrical
or thermal power to be set).

iThe project is hosted as open source at https://github.com/MrcJkb/forte_spine_comm.
iiCurrently, the HTTP communication layer can be downloaded at https://github.com/MrcJkb/forte_
http_comm. It will later be merged with the official FORTE repository.
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• Its “device discovery” and “node management” features. Similarly to the widely
used universal plug and play (UPnP), they allow the automatic establishment of
connections with various devices on the network once the device in question has
been connected. In an IEC 61499 implementation, a single function block would
have to be connected to the network and all CSIFBs would connect to any devices
they can communicate with without needing to know the address.

A device’s node manager handles all connections according to a “device discovery list”
it receives from another node manager on the network. The list contains information
about every so-called EntityTypei (i.e. a PV inverter), its so-called FeatureTypes
(e.g., Measurement), the specific usages (i.e. Power) and the connection information.
The node manager establishes connections not according to the devices themselves,
but according to the EntityTypes, their FeatureTypes and specific usages. For
example, an EntityType that performs curtailment on a PV inverter may denote its
FeatureType and a specific use as something like: Setpoint[.DeratingFactor]. If
a PV inverter that supports the specified FeatureTypes and specific uses exists on the
network, the node manager establishes a connection.
Like the IEC 61499 compliance profile for feasibility demonstrations, the SPINE protocol
specifies that data can be sent over TCP (client/server) or UDP (publish/subscribe).
Publishers and subscribers can also be bound to each other like clients and servers, so
that a publisher can only publish to one subscriber, and a subscriber can only listen in
on a single publisher.

8.2. Design of a SPINE implementation in FORTE

The main challenge for the implementation of the SPINE communication protocol in
FORTE is to abide by both the IEC 61499 standard and the SPINE specifications, since
they both define the application layer. A proposed interface of an IEC 61499 SPINE
implementation is depicted in figure 8.1. The illustration shows a SpineNodeManager

function block that initializes the connection to the SPINE network and opens a thread
for the node management tasks. Standard IEC 61499 CSIFBs are used for the in-
dividual FeatureTypes, which are specified via the ID data inputs with a spine[]

prefix. An internal SpineNodeManagementHandler acts as a mediator between the
function blocks and the node manager. To successfully initialize the CSIFBs, the
SpineNodeManager FB must be initialized first. The Singletonii design pattern could be
used for this purpose. Since the SpineNodeManagementHandler is always used by a
SPINE device, its unique instance can be constructed in a static initializer for thread
safety.

iA device may have multiple EntityTypes.
iiA singleton is an object of which only a single instance can exist in the entire program. A static method

provides a global point of access to it.
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Figure 8.1: Proposition for the interface of an IEC 61499 SPINE communication protocol
implementation. The implementation is still in its design stage, and the interface is
subject to change.

The class dependencies of the protocol implementation in FORTE are presented in
figure 8.2. For an understanding of the FORTE communication framework, refer to the
4diac documentation [11] or section 7.1. The CComFB is the underlying C++ class that
represents a CSIFB in FORTE, and the CComLayer is the interface of a communication
layer. An additional CSpineComLayer implements the application layer defined in [26].
It uses the SpineNodeManagementHandler’s connectEntityType() method to open
the SHIP transport layer’s connection, depending on the specific usages specified with
the CSIFB’s ID input. To be able to send and receive XML data, a SpineXmlParser

object is used. There are many open source and proprietary tools available for generat-
ing C++ classes from XML schemas, such as CodeSynthesis, XMLSpy, gSOAP and
xsd2cpp. The generated classes represent the XML data structures and are capable
of parsing and de/serializing. Since the interface of the CSIFBs is standardized, the
SpineXmlParser acts as an adapter between the generated XML classes and the
function block. It must be initialized at runtime according to the EntityType specified
in the openConnection() method’s parameters.

8.3. Implementation of the HTTP communication protocol in
FORTE

Today, many building energy components must be accessed via a REST application
programming interface (API). For example, storage systems by Sonnen GmbH (previ-
ously Sonnenbatterie GmbH) host a REST server, which allows to read measurements
of connected components as well as to set the battery’s charging or discharging power.
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Figure 8.2: Class dependencies of the planned SPINE implementation in FORTE. The imple-
mentation is still in its design stage, and the dependencies are subject to change.

This is done via HTTP GET and PUT requests, either as plain text or in the JavaScript
object notation (JSON) format [28]. To enable the interoperability of such devices with
IEC 61499 applications, a plain text HTTP communication layer was added to FORTE.
It uses no external C++ libraries and can thus be used with all of the compatible devices
listed in table 2.3. The implementation complies with the FORTE development docu-
mentation [11]. Since it currently just provides HTTP client functionality, only CLIENT

function blocks can be used with the protocol. An HTTP server implementation would
be possible, but appears less likely to be needed. Thus, it has been omitted so far.
A challenge lies in the fact that most HTTP servers deliberately close the clients’ con-
nections after a certain time-out period. An implementation that makes use of FORTE’s
available IP layer is often not fast enough to handle the received data before the con-
nection is closed by the peer. This results in the CSIFB’s process being interrupted too
soon and in an INITO output event being issued with a false qualifier (ref. table 3.1).
Unfortunately, a function block control loop that detects lost connections and attempts
to re-open them eventually causes FORTE to crash due to corrupted memory. This
is likely the case because FORTE was designed for industrial applications in which
socket connections are kept open at all times. To work around this issue, a customized
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IP communication layer was added. It handles opening the connection, sending and
receiving data and closing the connection all within its sendData() method. This occurs
in a loop until either the response has been received or a time-out period is exceeded.
As a result, the only times an INITO event with a false qualifier can be issued are
either when the function block is de-initialized or if the connection identifier is invalid.
Any other problem (such as an unexpected response) is indicated with a CNF event
and a false identifier. In this case, the response header is sent to the data output for
debugging purposes.
The type of function block used determines the HTTP method. Since just GET and PUT
with plain text are used, only CLIENT 0 1i, CLIENT 1ii and CLIENT 1 0iii function blocks
are supported at the moment. An example is illustrated in figure 8.3. If a CLIENT 1 FB
is used, the HTTP response header is sent to the RD 1 output. The ID input can be one
of the following:

• http[ip:port/path]

• http[ip:port/path;expected response]

where ip is the server’s IP address, port is the port number, path is the HTTP path.
In the top FB in figure 8.3, for example, the path is /rest/devices/battery/M03.
Additional optional arguments are separated with a semicolon.

iFor GET, with no data inputs.
iiFor PUT, with one data input and output, respectively.
iiiFor PUT, with no data outputs.
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Figure 8.3: Example for the execution of HTTP PUT and GET requests in 4diac.
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Figure 8.4: Class dependencies of the HTTP implementation in FORTE.

Currently, the only optional argument is expected response, which is set to HTTP/1.1 ...

200 OK if none is specified. An overview of the class dependencies of the HTTP protocol
implementation is presented in figure 8.4. An additional CHttpParser class is used for
handling the creation of requests and the interpretation of responses. This de-couples
the communication layer from the API, increasing the flexibility and making it easier to
adapt the code for different HTTP-based APIs.
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9. Deployment and field test

Section 2.2 briefly describes the MVC design pattern and how it can be projected
to this thesis. So far, the model has been one of the simulation tools; Polysun® and
Matlab®. No actual view has been implemented, but the concept has been present in
the form of 4diac-IDE’s monitoring feature. As mentioned previously, the MVC design
pattern decouples the model, the view and the controller from each other by using
the Observer and State design patterns. Put simply, one can exchange one model for
another without having to make any changes to the controller or the view, and vice
versa. This has already been applied to the combined PVprog and curtailment control
application co-simulated in section 6.3.3, where the Matlab® simulation model was
replaced by Polysun® in section 7.3.1. There were no changes made to the control
application apart from the CSIFBs and the fact that the SimpleBatteryModel function
block was replaced by the PolysunBatteryModel. The latter was merely done to prove
the flexibility of the controller, and the CSIFBs are technically not part of the control
application. They merely provide the interface. Furthermore, commercial tools such
as ISaGRAF and nxtSTUDIO handle the communication interface automatically. This
feature is also expected for a future version of 4diac [6].
In this section, the advantage of the MVC approach is proven further. The control
application “Version 1b”, developed in section 7.3.3, is deployed to a Raspberry Pi 2
and its PVprog operation is used in a real system.

9.1. System overview

The controller was installed in the “Living Equia” house at HTW Berlin [29], an energy-plus
house now used primarily for research. An overview of the set-up is depicted in fig-
ure 9.1. The building has a rooftop PV system with a nominal capacity of 4.6 kWp and
a “Sonnenbatterie” Li-ion battery with a usable capacity of 5.3 kWh, according to the

TCP/IP

SSH

Figure 9.1: Graphical representation of the controller’s field test set-up.
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manufactureri. FORTE, running on the Raspberry Pi, uses the HTTP communication
protocol implemented in section 8.3 to communicate with a REST server hosted by the
battery. All of the required data - the PV system’s power, the building’s load, the bat-
tery’s charging or discharging power and its operation mode (automatic/manual) - are
accessed via GET methods. Additionally, the charging/discharging power and operation
mode are set by sending PUT requests to the server.
Fortunately, the battery comes with its own view; an online web interface that can be
accessed via browser. For additional monitoring capabilities, CSIFBs were added to
the control application. Upon request, they send the measurements of the current day
and the current forecasts (PV power, load and battery charge roadmap) via TCP/IP
sockets. The Raspberry Pi’s physical location is within the building. It was connected to
the same local network as the battery. A remote configuration is possible via secure
shell (SSH).

9.2. Communication interface adjustment

In the co-simulations, the controller’s CSIFBs were SERVER function blocks. Since the
battery communicates via a REST server, it is not capable of periodically sending
updates to the controller. The controller must assume a client role and request the
data from the battery. As a result, the CSIFBs had to be rearranged in such a way that
they run in a control loop. Additionally, there is no way of requesting a time stamp from
the server. In order to generate one, a simple SIFB, FB SYS DT was created. Since
its internal implementation is written in C++ii, it cannot be used with any runtime that
does not support the programming of SIFBs in C++, other than FORTE. However,
since it performs a simple task, porting it to another environment should not be difficult.
The function block’s interface is easily explained. Upon request, it issues an output
event along with the device’s network time protocol (NTP) corrected system time in

iThe actual usable capacity may have been slightly reduced due to degradation.
iiThe source code is provided with the function block library.

FB_SYS_DT
REQ CNF
FB_SYS_DT

1.0
SDT

E_DELAY_1
START
STOP

EO

E_DELAY
0.1

DT

E_MERGE
EI1
EI2

EO

E_MERGE
0.1

T#1s

ControlSequence
INIT
REQ

INITO
CNF

ControlSequence
DTIN

E_RESTART
COLD
WARM
STOP

E_RESTART
0.0

Figure 9.2: Qualitative illustration of the control loop implemented for use with a REST server.
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the DATE AND TIME format. The control loop is illustrated qualitatively in figure 9.2,
wherein the unmodified control application and its CSIFBs are represented by the
ControlSequence subapplication. The loop is triggered after initialization. A delay of
1 s was added to reduce the server load and thus the amount of bad HTTP responses
due, for example, to server errors.

9.3. Stability improvements

Unlike simulation models, physical devices are prone to failure. To ensure that the
controller runs with as little down time as possible, the following stability improvements
were made:

9.3.1. Client CSIFB wrappers

Every now and then, the Sonnenbatterie server encounters issues, causing it to send an
HTTP 1.1 500 Internal Server Error response. Additionally, it sporadically does
not send a response at all, in which case the respective request times out. Neither of
these cases interrupt the controller process, as the corresponding CLIENT function block
still issues a CNF event (with a false output qualifier, see section 8.3). Nevertheless, if
occurring over a longer period, such behaviour may influence the controller’s output
negatively. A preferable solution is to temporarily pause the controller’s operation and
wait for the server to recover. To implement this behaviour, a set of wrappers for CLIENT
function blocks using the HTTP communication protocol were created. They share the
same interface as regular CLIENT function blocks, except for the fact that their data
inputs and outputs are bound to specific data types. As a result, connections do not
have to be reconfigured when replacing CLIENT FBs with them. Figure 9.3 illustrates
the composite network of a CLIENTRC 0 1 function block. The wrapped CLIENT 0 1

FB’s output events are delegated according to the event qualifier. In the case of success
(QO = true), the CNF event is directly passed on to the CFB’s output. Otherwise, it is
rerouted to the CLIENT 0 1 FB’s INIT input with a false qualifier, causing the network
stack to be deleted. The deletion is confirmed with an INITO output event and a false

output qualifier, which in turn triggers a reinitialization of the CSIFB. To give the server
time to recover, the INITO output with a true qualifier is passed back to the CSIFB’s
REQ input via a delay of 5 s. This loop continues until a positive response is received.
The three top function blocks (E TF, F SEL and E SWITCH) determine whether an INITO

event was triggered by a previous failed request attempt or by the composite function
block’s external INIT input.
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Figure 9.3: Composite network of the CLIENTRC 0 1 function block.

9.3.2. Watchdog timer

Another failure possibility for any piece of hardware is freezing. This could occur
for various reasons, for example due to overheating, memory leaks, etc. The Linux
kernel features a so-called Watchdog API that allows the use of a hardware circuit
which can reboot the device if a failure is detected [30]. The circuit runs separately
from the processor so that it is unlikely that both would fail at the same time. Such a
circuit exists for the Raspberry Pi. Once a watchdog timer is started using the API,
it must be pinged regularly (the default interval is usually 15 s), or else it will reboot
the device. An SIFB that can be used to access the Watchdog API from IEC 61499
applications was developed and added to the function block library. It can only be used
in Portable Operating System Interface (POSIX) systems; attempting to include it in a
Win32 version of FORTE will cause the build to fail. The interface of the function block
is depicted in figure 9.4.

INIT
REQ

INITO

FB_WATCHDOG
1.0

QI
TIMEOUT

QO
STATUS

TIMEOUTO

Event Input Qualifier    -    BOOL
Watchdog timeout    -    TIME

Service Initialization    -    Event
Service Request    -    Event

BOOL    -    Event Output Qualifier
WSTRING    -    Service Status
TIME    -    The timeout that has actually been set.

Event    -    Initialization Confirm

Figure 9.4: Interface of the FB WATCHDOG function block.
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An INIT event with a true qualifier enables the watchdog timer, and a false qualifier
disables it, respectively. The desired time-out can be set; however, it must be noted
that the device may ignore the set value in some cases. For example, this can occur if
another application has already set a shorter time-out or if the set value is outside the
supported range.
For this reason, users are advised to extensively test the function block on the device it
is to be used on before using it in an application. The TIMEOUTO data output indicates
the time-out that was actually set. To ping the watchdog, the REQ input is used. It
is generally advisable to proceed with caution when using the function block on a
device on which FORTE is started automatically. For example, if the control application
loads before the device’s network interface is fully initialized (see section 9.5 for how to
prevent this), the FB WATCHDOG function block could cause a continuous reboot loop. As
an SIFB, the FB WATCHDOG cannot be directly used with an RTE other than 4diac. Its
source code is included in the library so that it can be transferred to any IEC 61499
environment that supports C or C++ code.

9.3.3. Forecast data backups

The LoadForecaster BFB requires 1 day and the PVForecaster BFB takes up to
10 days to fully initialize. Because of this, reboots can have a negative impact on
the PVprog operation’s performance. To minimize the detriment, the two BFBs were
replaced with SIFBs, FortePVForecaster and ForteLoadForecaster, that perform
exactly the same operations. In addition, however, they save a backup of their critical
data every minute and attempt to load it upon initialization. That way, the initialization
phase is shortened if the device reboots unexpectedly. As with the other SIFBs, they
are not portable, but their source code is included in the library so that equivalent SIFBs
can be created for other environments. If they do not support C++ code, however, the
standard BFB variants must be used. A suggestion to the authors of IEC 61499 would
be to extend the ST programming language with the ability to save and load variables
and arrays.

9.4. Sonnenbatterie CSIFBs

Unfortunately, simply setting the control mode to manual does not suffice to gain control
over the Sonnenbatterie. In order to allow the battery to calibrate, it should be put
into automatic mode when fully charged. When in trickle charging mode, it should be
charged briefly in order to release it from that mode. Finally, switching the battery’s
operation mode from automatic to manual should be followed by a 10 s delay to prevent
it from going into standby. So that users do not have to worry about any of this, the
functionality is wrapped in an SBActorRC composite function block. Its interface, which
is almost identical to that of the BatteryActor function block used in co-simulations
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INIT
REQ
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CNF
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1.0

QI
ID
PB
SOC
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QO
STATUS

Input event qualifier    -    BOOL
Connection identifier (ip:port)    -    WSTRING

Battery transfer in W    -    LREAL
 State of charge [0,..,1]    -    LREAL

Power used to release from trickle charge in W    -    LREAL

Initialization Request    -    Event
Normal Execution Request    -    Event

BOOL    -    Output event qualifier
WSTRING    -    HTTP response codes

Event    -    Initialization Confirm
Event    -    Execution Confirmation

Figure 9.5: Interface of the SBActorRC function block.

with Polysun® (see section 7.2.3), is presented in figure 9.5. For the aforementioned
calibration purposes and trickle charge release, it takes two additional inputs: The
SoC and the power used to release the battery from its trickle charging mode. Due
to the large amount of function blocks used, the CFB’s internal composite network is
not discussed in this paper. Interested readers are advised to examine the function
block in 4diac. A corresponding SBSensorRC (see figure 9.6) wraps around three
CLIENT function blocks and converts their outputs to the interface of the BatterySensor

function block used in the Polysun® co-simulations (see section 7.2.2). According to the
Sonnenbatterie API, three separate requests must be sent to retrieve positive values
for both the charging and discharging power in W, respectively, and the SoC in %.
The SBSensorRC FB performs all three requests with a single REQ event and outputs a
positive value for charging, a negative value for discharging power and a normalized
SoC, as is expected by the control application. Both function blocks output the HTTP
response codes with the STATUS data outputs for debugging purposes. To request
the load and PV power from the REST server, the use of CLIENTRC function blocks is
sufficient.

9.5. Deployment to the Raspberry Pi

The deployment of FORTE to the Raspberry Pi (running Raspbian OS) was performed
according to the manual found in the 4diac documentation [11].

INIT
REQ

INITO
CNF

SBSensorRC
1.0

QI
ID

QO
STATUS

SOC
PB

- BOOLInput event qualifier
 Connection identifier (ip:port) - WSTRING

Initialization Request - Event
Normal Execution Request - Event

Event    -    Initialization Confirm
Event    -    Execution Confirmation

BOOL    -    Output event qualifier
WSTRING    -    HTTP response codes
LREAL    -    State of charge [0,..,1]
LREAL    -    Battery transfer in W

Figure 9.6: Interface of the SBSensorRC function block.
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The following additional configurations were performed in order to start FORTE auto-
matically upon booting the Raspberry Pi and to load the application:

• Exported the application to a FORTE boot file (see 4diac documentation) that is
placed in the same directory as FORTE and loaded once FORTE starts up.

• Created a bash script, startForte.sh, that waits for a network connection before
changing the working directory to the directory containing the boot file and FORTE
and then starting up the application. The script also logs all terminal outputs to a
text file for debugging purposes.

• Added a line calling startForte.sh to the script, /etc/rc.local, that runs at
boot time.

Assuming that FORTE, the boot files and the startForte.sh script are all in the
/home/pi/ directory, the line added to /etc/rc.local is as follows:

\home\pi\startForte.sh &

With the contents of startForte.sh being:

#!/bin/bash

#Checks for a network connection and then starts forte

STATE="error";

while [ $STATE == "error" ]; do

# Check for an active network connection

STATE=$(ping -q -w 1 -c 1 `ip r | grep default

| cut -d ' ' -f 3` > /dev/null &&

echo ok || echo error)

# Wait for 2 seconds

sleep 2

done

# cd to forte dir to enable boot file loading

cd /home/pi/

(

# Start FORTE ...

./ forte

# ...and log output

) &> /home/pi/forteLog.txt

The startForte.sh script must be made executable with the following shell com-
mand:

chmod \home\pi\startForte.sh +x
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9.6. Monitoring results

The energy flows of the field test are presented in figure 9.7 for a selected day. They
clearly prove that the PVprog operation performs as intended in a real system. In the
early morning, the dynamic charging threshold is set to a relatively low value and is
adjusted for the high PV generation throughout the course of the day. The clouds in the
late afternoon result in the threshold being lowered again. Causes for the low threshold
in the morning can include:

i) The PV power output in the morning and/or evening of the last day is significantly
lower than Ppv,max.

ii) The controller is still in its initialization phase. It takes up to 10 days for the PV
forecasts to reach their optimal quality.

iii) All of the previous 10 days were cloudy, causing Ppv,max not to be equivalent to
Ppv,cs.

iv) The usable battery capacity is lower than stated by the manufacturer, e.g., due to
degradation.

In this case, the day before the one pictured in figure 9.7 was completely sunny, elimin-
ating (iii) from the possible reasons. Nevertheless, (i) could be a cause due to the fact
that the field test was performed in September - a time in which the PV power output is
reduced slightly every day due to the sun’s decreasing declination - especially in the
early mornings, where horizon shading is most prominent.

Figure 9.7: Measured energy flows on a selected day during field testing of the control ap-
plication running on a Raspberry Pi 2. The measurements are recorded as 1 min
averages. Nominal PV power: 4.6 kWp, usable battery capacity: 5.3 kWh.
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The depicted day in figure 9.7 is exactly 10 days after having installed the controller, so
(ii) can be ruled out. This leaves (i) and (iv) as the contributing factors.
The former should be of no concern and the latter could be solved by adding a subap-
plication to the controller that estimates the usable capacity during discharging at night.
It could be triggered when the battery reaches an SoC of 100 %. The capacity in kWh
would be estimated by integrating over all measured power flows coming out of and
going into the battery until it is empty. An SoC of 0 % could then be used to trigger
an update of the usable capacity for the PVprog subapplication. Further analysis is
necessary to test the reliability of such an implementation. For the scope of this thesis,
however, the field test can be regarded as successful.
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10. Summary, outlook and conclusion

After having defined the criteria for the control applications - flexibility, portability, easy
understandability and no boundaries by proprietary limitations - a strategy using an
MVC approach was devised. The highly flexible and portable IEC 61499 standard
was chosen along with the open source development environment, 4diac, as a tool for
implementing the strategy. A set of IEC 61499 function block libraries were developed
for the use in building energy systems with PV, batteries and/or SG Ready heat pumps.
They implement the PVprog algorithm [1] - forecast-based PV feed-in limitation and
maximization of self-sufficiency, curtailment and DSM of heat pumps based on [19].
After briefly introducing the reader to the PVprog algorithm and the IEC 61499 standard,
the function block libraries were documented in detail. Then, they were used for the
development of the actual control applications.
Before proceeding with the development, the tools available in 4diac for the testing of
function blocks and IEC 61499 applications were analysed. Though plentiful and useful,
they were found to be insufficient for the validation of complex control applications for
multi-generator energy systems. Thus, the testing capabilities were extended by devel-
oping a 4diac/Matlab® TCP/IP communication library. Its use is documented in detail
in this paper. With the tcpip4diac class, it was made possible to validate IEC 61499
control applications by using them with Matlab® simulation models. This was done for
a PVprog control application, a curtailment application and a combination of the two.
The co-simulation of the combined PVprog and curtailment application answered open
questions about configuration details. It was shown that each component of the PVprog
subapplication needs to know the uncurtailed PV power for optimal operation. Thus, a
combination of it with curtailment in the same control application is advisable.
To be able to incorporate heat pump DSM into the control applications and validate
them, the simulation software Polysun® was used. For communication, a library that
implements the OSI layer design pattern was created and used with Polysun’s plugin
controller feature. The result was the Polysun4diac controller plugin that, together
with the communication library it uses, is documented in detail in this thesis. With the
actor and sensor plugin controllers, Polysun’s adequacy for co-simulations with real
time IEC 61499 control applications was first verified by running another co-simulation
of the previously validated control application.
Next, an SG Ready heat pump controller, which was later combined with the PVprog/-
curtailment application, was devised and co-simulated. A first simulation of the three
combined subapplications provided the valuable insight that the SG Ready subapplica-
tion interferes slightly with the PVprog operation. Because it has to adjust its output for
the heat pump, the PVprog network temporarily lowers the battery charging threshold,
which in turn results in curtailment during afternoon hours. This effect was mitigated
by creating a variation of the control application that takes separate measurements of
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the heat pump and the rest of the load. The heat pump’s electricity consumption is
treated by the PVprog algorithm as a load when it is operated normally, and as energy
storage when in an amplified operation mode. This resulted in a further reduction of the
curtailment losses, but also in a half as large reduction of electricity purchased from the
grid. Adjusting the SG Ready controller to activate mode 4 when curtailment occurs
negated the negative effect on grid purchase slightly, but even more so for the initial
version of the control application. Whether or not it is more beneficial to separate the
heat pump’s electricity consumption most likely depends on the system dimensions
and feed-in limit. Comparing the two simulation tools that were used, the development
process using the Polysun® plugin was faster than that using the Matlab® library. This is
due a 30-fold performance increase in co-simulation time for Polysun®. For 1 s resolved
simulations of a year, simulation times of 2.5 h were achieved using the Polysun® plugin.
Even shorter simulation times could in theory be achieved by incorporating the ability to
run IEC 61499 applications natively in Polysun®.
In a step toward enabling a communication of the developed IEC 61499 applications
with SPINE devices, a design was devised for the protocol’s implementation in 4diac.
Its implementation, however, is planned outside the scope of this thesis. In addition to
the initial design of the SPINE communication layer, an HTTP layer was developed and
documented to make 4diac compatible with REST APIs used by many building energy
components today.
In a final validation step, an application that communicates using the HTTP layer was
deployed to a Raspberry Pi 2 and installed in a building with a PV system and a battery.
Some minor changes had to be made to the application, because the server/client roles
of the system are swapped compared to the simulation. However, those changes are
minor, and could easily be automated. Furthermore, using the server role in Polysun®

would significantly reduce the need to make changes in the controller. To be able to
do this, the Polysun® controllers would have to be run from within parallel threads.
Alternatively, a single plugin controller could be created that puts the communication
sockets in a multi-threaded environment, but this would decrease the flexibility of the
plugin. The need to make changes to the control application could eventually be com-
pletely eliminated by implementing the HTTP and SPINE communication protocols into
the Polysun4diac plugin controller. This would be beneficial not only for the use with
IEC 61499 control applications.
In the field test, additional challenges for the real time use of the control applications
were identified and overcome. They consisted of the need for a watchdog timer in
case of hardware or software failure, the necessity to handle communication issues
and the optional addition of the ability to backup internal data that take a long time
to initialize. For better portability of the latter feature, an implementation of the ability
to save variables in the ST programming language would be desirable. Although the
time constraints did not allow for a full year of field testing, enough measurements
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could be collected to prove that the PVprog subapplication performs just as intended.
It would be interesting to one day be able to compare the results of a PV battery heat
pump system co-simulated with Polysun® and 4diac with a Raspberry Pi deployment
in the field. Overall, however, the results of this thesis bring us to the conclusion
that the project has been a success. The need for generic control software based on
standards for multi-generator energy systems has been met with a flexible, fully open
source IEC 61499 solution that can be deployed to a large variety of low-cost hardware.
Thanks to the communication libraries, its functionality can easily be extended and
quickly validated using simulation software. With the rate at which the global renewable
industry is growing, the potential for further development of this project may never cease
to exist. By providing a first step toward the establishment of an open source community
in the so-far luxury field of intelligent energy management, this thesis is an important
contribution to a much needed energy revolution.
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Figure A.1: The DT TO DOY UINT function block’s composite network.

A. Additional helper function blocks

PVprog utility function blocks

The DT TO DOY UINT FB converts DATE AND TIME data types to the day of the year, a
UINT between 1 and 366. 1 represents January 1st and 365 or 366 represent Decem-
ber 31st, depending on the occurrence of a leap year. The DT TO TD UINT FB converts
DATE AND TIME data types to the minute of the day (“time of day”), a UINT between 0

and 1439, representing the number of minutes since 12:00 AM.
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Figure A.2: The DT TO TD UINT function block’s composite network.
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Additional function blocks

The F N MIN MEAN LREAL FB estimates the mean of data within fixed-sized intervals
and returns the output at the end of each interval.
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Figure A.3: Composite network of the F N MIN MEAN LREAL FB.
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Figure A.4: Composite network of the F N MIN RUNMEAN function block.

PV curtailment utility function blocks

The F N MIN RUNMEAN CFB (figure A.4) computes an estimation of the n min run-
ning average of the FB’s input X using the accompanying time stamps. It uses the
F N MIN MEAN LREAL to compute 1 min averages that are issued every minute and
caches the last n values in the F SUM LAST N BFB, which outputs the sum thereof. Fi-
nally, the intermediate result is divided by the number of minutes n to average over. As
the composite network illustrates, an output is generated for every input event. However,
the running average is only updated every minute.
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